Step |
Hyp |
Ref |
Expression |
1 |
|
pm2mpf1lem.p |
|- P = ( Poly1 ` R ) |
2 |
|
pm2mpf1lem.c |
|- C = ( N Mat P ) |
3 |
|
pm2mpf1lem.b |
|- B = ( Base ` C ) |
4 |
|
pm2mpf1lem.m |
|- .* = ( .s ` Q ) |
5 |
|
pm2mpf1lem.e |
|- .^ = ( .g ` ( mulGrp ` Q ) ) |
6 |
|
pm2mpf1lem.x |
|- X = ( var1 ` A ) |
7 |
|
pm2mpf1lem.a |
|- A = ( N Mat R ) |
8 |
|
pm2mpf1lem.q |
|- Q = ( Poly1 ` A ) |
9 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
10 |
7
|
matring |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
11 |
10
|
adantr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) -> A e. Ring ) |
12 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
13 |
|
eqid |
|- ( 0g ` A ) = ( 0g ` A ) |
14 |
|
simpllr |
|- ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) /\ k e. NN0 ) -> R e. Ring ) |
15 |
|
simplrl |
|- ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) /\ k e. NN0 ) -> U e. B ) |
16 |
|
simpr |
|- ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) /\ k e. NN0 ) -> k e. NN0 ) |
17 |
1 2 3 7 12
|
decpmatcl |
|- ( ( R e. Ring /\ U e. B /\ k e. NN0 ) -> ( U decompPMat k ) e. ( Base ` A ) ) |
18 |
14 15 16 17
|
syl3anc |
|- ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) /\ k e. NN0 ) -> ( U decompPMat k ) e. ( Base ` A ) ) |
19 |
18
|
ralrimiva |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) -> A. k e. NN0 ( U decompPMat k ) e. ( Base ` A ) ) |
20 |
1 2 3 7 13
|
decpmatfsupp |
|- ( ( R e. Ring /\ U e. B ) -> ( k e. NN0 |-> ( U decompPMat k ) ) finSupp ( 0g ` A ) ) |
21 |
20
|
ad2ant2lr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) -> ( k e. NN0 |-> ( U decompPMat k ) ) finSupp ( 0g ` A ) ) |
22 |
|
simprr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) -> K e. NN0 ) |
23 |
8 9 6 5 11 12 4 13 19 21 22
|
gsummoncoe1 |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) -> ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( U decompPMat k ) .* ( k .^ X ) ) ) ) ) ` K ) = [_ K / k ]_ ( U decompPMat k ) ) |
24 |
|
csbov2g |
|- ( K e. NN0 -> [_ K / k ]_ ( U decompPMat k ) = ( U decompPMat [_ K / k ]_ k ) ) |
25 |
24
|
ad2antll |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) -> [_ K / k ]_ ( U decompPMat k ) = ( U decompPMat [_ K / k ]_ k ) ) |
26 |
|
csbvarg |
|- ( K e. NN0 -> [_ K / k ]_ k = K ) |
27 |
26
|
ad2antll |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) -> [_ K / k ]_ k = K ) |
28 |
27
|
oveq2d |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) -> ( U decompPMat [_ K / k ]_ k ) = ( U decompPMat K ) ) |
29 |
23 25 28
|
3eqtrd |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) -> ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( U decompPMat k ) .* ( k .^ X ) ) ) ) ) ` K ) = ( U decompPMat K ) ) |