| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pm2mpf1lem.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
pm2mpf1lem.c |
|- C = ( N Mat P ) |
| 3 |
|
pm2mpf1lem.b |
|- B = ( Base ` C ) |
| 4 |
|
pm2mpf1lem.m |
|- .* = ( .s ` Q ) |
| 5 |
|
pm2mpf1lem.e |
|- .^ = ( .g ` ( mulGrp ` Q ) ) |
| 6 |
|
pm2mpf1lem.x |
|- X = ( var1 ` A ) |
| 7 |
|
pm2mpf1lem.a |
|- A = ( N Mat R ) |
| 8 |
|
pm2mpf1lem.q |
|- Q = ( Poly1 ` A ) |
| 9 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
| 10 |
7
|
matring |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
| 11 |
10
|
adantr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) -> A e. Ring ) |
| 12 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
| 13 |
|
eqid |
|- ( 0g ` A ) = ( 0g ` A ) |
| 14 |
|
simpllr |
|- ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) /\ k e. NN0 ) -> R e. Ring ) |
| 15 |
|
simplrl |
|- ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) /\ k e. NN0 ) -> U e. B ) |
| 16 |
|
simpr |
|- ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) /\ k e. NN0 ) -> k e. NN0 ) |
| 17 |
1 2 3 7 12
|
decpmatcl |
|- ( ( R e. Ring /\ U e. B /\ k e. NN0 ) -> ( U decompPMat k ) e. ( Base ` A ) ) |
| 18 |
14 15 16 17
|
syl3anc |
|- ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) /\ k e. NN0 ) -> ( U decompPMat k ) e. ( Base ` A ) ) |
| 19 |
18
|
ralrimiva |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) -> A. k e. NN0 ( U decompPMat k ) e. ( Base ` A ) ) |
| 20 |
1 2 3 7 13
|
decpmatfsupp |
|- ( ( R e. Ring /\ U e. B ) -> ( k e. NN0 |-> ( U decompPMat k ) ) finSupp ( 0g ` A ) ) |
| 21 |
20
|
ad2ant2lr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) -> ( k e. NN0 |-> ( U decompPMat k ) ) finSupp ( 0g ` A ) ) |
| 22 |
|
simprr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) -> K e. NN0 ) |
| 23 |
8 9 6 5 11 12 4 13 19 21 22
|
gsummoncoe1 |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) -> ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( U decompPMat k ) .* ( k .^ X ) ) ) ) ) ` K ) = [_ K / k ]_ ( U decompPMat k ) ) |
| 24 |
|
csbov2g |
|- ( K e. NN0 -> [_ K / k ]_ ( U decompPMat k ) = ( U decompPMat [_ K / k ]_ k ) ) |
| 25 |
24
|
ad2antll |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) -> [_ K / k ]_ ( U decompPMat k ) = ( U decompPMat [_ K / k ]_ k ) ) |
| 26 |
|
csbvarg |
|- ( K e. NN0 -> [_ K / k ]_ k = K ) |
| 27 |
26
|
ad2antll |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) -> [_ K / k ]_ k = K ) |
| 28 |
27
|
oveq2d |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) -> ( U decompPMat [_ K / k ]_ k ) = ( U decompPMat K ) ) |
| 29 |
23 25 28
|
3eqtrd |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) -> ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( U decompPMat k ) .* ( k .^ X ) ) ) ) ) ` K ) = ( U decompPMat K ) ) |