Metamath Proof Explorer


Theorem pm2mpfval

Description: A polynomial matrix transformed into a polynomial over matrices. (Contributed by AV, 4-Oct-2019) (Revised by AV, 5-Dec-2019)

Ref Expression
Hypotheses pm2mpval.p
|- P = ( Poly1 ` R )
pm2mpval.c
|- C = ( N Mat P )
pm2mpval.b
|- B = ( Base ` C )
pm2mpval.m
|- .* = ( .s ` Q )
pm2mpval.e
|- .^ = ( .g ` ( mulGrp ` Q ) )
pm2mpval.x
|- X = ( var1 ` A )
pm2mpval.a
|- A = ( N Mat R )
pm2mpval.q
|- Q = ( Poly1 ` A )
pm2mpval.t
|- T = ( N pMatToMatPoly R )
Assertion pm2mpfval
|- ( ( N e. Fin /\ R e. V /\ M e. B ) -> ( T ` M ) = ( Q gsum ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) ) )

Proof

Step Hyp Ref Expression
1 pm2mpval.p
 |-  P = ( Poly1 ` R )
2 pm2mpval.c
 |-  C = ( N Mat P )
3 pm2mpval.b
 |-  B = ( Base ` C )
4 pm2mpval.m
 |-  .* = ( .s ` Q )
5 pm2mpval.e
 |-  .^ = ( .g ` ( mulGrp ` Q ) )
6 pm2mpval.x
 |-  X = ( var1 ` A )
7 pm2mpval.a
 |-  A = ( N Mat R )
8 pm2mpval.q
 |-  Q = ( Poly1 ` A )
9 pm2mpval.t
 |-  T = ( N pMatToMatPoly R )
10 1 2 3 4 5 6 7 8 9 pm2mpval
 |-  ( ( N e. Fin /\ R e. V ) -> T = ( m e. B |-> ( Q gsum ( k e. NN0 |-> ( ( m decompPMat k ) .* ( k .^ X ) ) ) ) ) )
11 10 3adant3
 |-  ( ( N e. Fin /\ R e. V /\ M e. B ) -> T = ( m e. B |-> ( Q gsum ( k e. NN0 |-> ( ( m decompPMat k ) .* ( k .^ X ) ) ) ) ) )
12 oveq1
 |-  ( m = M -> ( m decompPMat k ) = ( M decompPMat k ) )
13 12 oveq1d
 |-  ( m = M -> ( ( m decompPMat k ) .* ( k .^ X ) ) = ( ( M decompPMat k ) .* ( k .^ X ) ) )
14 13 mpteq2dv
 |-  ( m = M -> ( k e. NN0 |-> ( ( m decompPMat k ) .* ( k .^ X ) ) ) = ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) )
15 14 oveq2d
 |-  ( m = M -> ( Q gsum ( k e. NN0 |-> ( ( m decompPMat k ) .* ( k .^ X ) ) ) ) = ( Q gsum ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) ) )
16 15 adantl
 |-  ( ( ( N e. Fin /\ R e. V /\ M e. B ) /\ m = M ) -> ( Q gsum ( k e. NN0 |-> ( ( m decompPMat k ) .* ( k .^ X ) ) ) ) = ( Q gsum ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) ) )
17 simp3
 |-  ( ( N e. Fin /\ R e. V /\ M e. B ) -> M e. B )
18 ovexd
 |-  ( ( N e. Fin /\ R e. V /\ M e. B ) -> ( Q gsum ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) ) e. _V )
19 11 16 17 18 fvmptd
 |-  ( ( N e. Fin /\ R e. V /\ M e. B ) -> ( T ` M ) = ( Q gsum ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) ) )