| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pm2mpval.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
pm2mpval.c |
|- C = ( N Mat P ) |
| 3 |
|
pm2mpval.b |
|- B = ( Base ` C ) |
| 4 |
|
pm2mpval.m |
|- .* = ( .s ` Q ) |
| 5 |
|
pm2mpval.e |
|- .^ = ( .g ` ( mulGrp ` Q ) ) |
| 6 |
|
pm2mpval.x |
|- X = ( var1 ` A ) |
| 7 |
|
pm2mpval.a |
|- A = ( N Mat R ) |
| 8 |
|
pm2mpval.q |
|- Q = ( Poly1 ` A ) |
| 9 |
|
pm2mpval.t |
|- T = ( N pMatToMatPoly R ) |
| 10 |
1 2 3 4 5 6 7 8 9
|
pm2mpval |
|- ( ( N e. Fin /\ R e. V ) -> T = ( m e. B |-> ( Q gsum ( k e. NN0 |-> ( ( m decompPMat k ) .* ( k .^ X ) ) ) ) ) ) |
| 11 |
10
|
3adant3 |
|- ( ( N e. Fin /\ R e. V /\ M e. B ) -> T = ( m e. B |-> ( Q gsum ( k e. NN0 |-> ( ( m decompPMat k ) .* ( k .^ X ) ) ) ) ) ) |
| 12 |
|
oveq1 |
|- ( m = M -> ( m decompPMat k ) = ( M decompPMat k ) ) |
| 13 |
12
|
oveq1d |
|- ( m = M -> ( ( m decompPMat k ) .* ( k .^ X ) ) = ( ( M decompPMat k ) .* ( k .^ X ) ) ) |
| 14 |
13
|
mpteq2dv |
|- ( m = M -> ( k e. NN0 |-> ( ( m decompPMat k ) .* ( k .^ X ) ) ) = ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) ) |
| 15 |
14
|
oveq2d |
|- ( m = M -> ( Q gsum ( k e. NN0 |-> ( ( m decompPMat k ) .* ( k .^ X ) ) ) ) = ( Q gsum ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) ) ) |
| 16 |
15
|
adantl |
|- ( ( ( N e. Fin /\ R e. V /\ M e. B ) /\ m = M ) -> ( Q gsum ( k e. NN0 |-> ( ( m decompPMat k ) .* ( k .^ X ) ) ) ) = ( Q gsum ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) ) ) |
| 17 |
|
simp3 |
|- ( ( N e. Fin /\ R e. V /\ M e. B ) -> M e. B ) |
| 18 |
|
ovexd |
|- ( ( N e. Fin /\ R e. V /\ M e. B ) -> ( Q gsum ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) ) e. _V ) |
| 19 |
11 16 17 18
|
fvmptd |
|- ( ( N e. Fin /\ R e. V /\ M e. B ) -> ( T ` M ) = ( Q gsum ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) ) ) |