| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pm2mpfo.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
pm2mpfo.c |
|- C = ( N Mat P ) |
| 3 |
|
pm2mpfo.b |
|- B = ( Base ` C ) |
| 4 |
|
pm2mpfo.m |
|- .* = ( .s ` Q ) |
| 5 |
|
pm2mpfo.e |
|- .^ = ( .g ` ( mulGrp ` Q ) ) |
| 6 |
|
pm2mpfo.x |
|- X = ( var1 ` A ) |
| 7 |
|
pm2mpfo.a |
|- A = ( N Mat R ) |
| 8 |
|
pm2mpfo.q |
|- Q = ( Poly1 ` A ) |
| 9 |
|
pm2mpfo.l |
|- L = ( Base ` Q ) |
| 10 |
7
|
matring |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
| 11 |
10
|
3adant3 |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> A e. Ring ) |
| 12 |
11
|
adantr |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. NN0 ) -> A e. Ring ) |
| 13 |
|
simpl2 |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. NN0 ) -> R e. Ring ) |
| 14 |
|
simpl3 |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. NN0 ) -> M e. B ) |
| 15 |
|
simpr |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. NN0 ) -> K e. NN0 ) |
| 16 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
| 17 |
1 2 3 7 16
|
decpmatcl |
|- ( ( R e. Ring /\ M e. B /\ K e. NN0 ) -> ( M decompPMat K ) e. ( Base ` A ) ) |
| 18 |
13 14 15 17
|
syl3anc |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. NN0 ) -> ( M decompPMat K ) e. ( Base ` A ) ) |
| 19 |
|
eqid |
|- ( mulGrp ` Q ) = ( mulGrp ` Q ) |
| 20 |
16 8 6 4 19 5 9
|
ply1tmcl |
|- ( ( A e. Ring /\ ( M decompPMat K ) e. ( Base ` A ) /\ K e. NN0 ) -> ( ( M decompPMat K ) .* ( K .^ X ) ) e. L ) |
| 21 |
12 18 15 20
|
syl3anc |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. NN0 ) -> ( ( M decompPMat K ) .* ( K .^ X ) ) e. L ) |