Metamath Proof Explorer


Theorem pm2mpghmlem1

Description: Lemma 1 for pm2mpghm . (Contributed by AV, 15-Oct-2019) (Revised by AV, 4-Dec-2019)

Ref Expression
Hypotheses pm2mpfo.p
|- P = ( Poly1 ` R )
pm2mpfo.c
|- C = ( N Mat P )
pm2mpfo.b
|- B = ( Base ` C )
pm2mpfo.m
|- .* = ( .s ` Q )
pm2mpfo.e
|- .^ = ( .g ` ( mulGrp ` Q ) )
pm2mpfo.x
|- X = ( var1 ` A )
pm2mpfo.a
|- A = ( N Mat R )
pm2mpfo.q
|- Q = ( Poly1 ` A )
pm2mpfo.l
|- L = ( Base ` Q )
Assertion pm2mpghmlem1
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. NN0 ) -> ( ( M decompPMat K ) .* ( K .^ X ) ) e. L )

Proof

Step Hyp Ref Expression
1 pm2mpfo.p
 |-  P = ( Poly1 ` R )
2 pm2mpfo.c
 |-  C = ( N Mat P )
3 pm2mpfo.b
 |-  B = ( Base ` C )
4 pm2mpfo.m
 |-  .* = ( .s ` Q )
5 pm2mpfo.e
 |-  .^ = ( .g ` ( mulGrp ` Q ) )
6 pm2mpfo.x
 |-  X = ( var1 ` A )
7 pm2mpfo.a
 |-  A = ( N Mat R )
8 pm2mpfo.q
 |-  Q = ( Poly1 ` A )
9 pm2mpfo.l
 |-  L = ( Base ` Q )
10 7 matring
 |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring )
11 10 3adant3
 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> A e. Ring )
12 11 adantr
 |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. NN0 ) -> A e. Ring )
13 simpl2
 |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. NN0 ) -> R e. Ring )
14 simpl3
 |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. NN0 ) -> M e. B )
15 simpr
 |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. NN0 ) -> K e. NN0 )
16 eqid
 |-  ( Base ` A ) = ( Base ` A )
17 1 2 3 7 16 decpmatcl
 |-  ( ( R e. Ring /\ M e. B /\ K e. NN0 ) -> ( M decompPMat K ) e. ( Base ` A ) )
18 13 14 15 17 syl3anc
 |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. NN0 ) -> ( M decompPMat K ) e. ( Base ` A ) )
19 eqid
 |-  ( mulGrp ` Q ) = ( mulGrp ` Q )
20 16 8 6 4 19 5 9 ply1tmcl
 |-  ( ( A e. Ring /\ ( M decompPMat K ) e. ( Base ` A ) /\ K e. NN0 ) -> ( ( M decompPMat K ) .* ( K .^ X ) ) e. L )
21 12 18 15 20 syl3anc
 |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. NN0 ) -> ( ( M decompPMat K ) .* ( K .^ X ) ) e. L )