Step |
Hyp |
Ref |
Expression |
1 |
|
pm2mpfo.p |
|- P = ( Poly1 ` R ) |
2 |
|
pm2mpfo.c |
|- C = ( N Mat P ) |
3 |
|
pm2mpfo.b |
|- B = ( Base ` C ) |
4 |
|
pm2mpfo.m |
|- .* = ( .s ` Q ) |
5 |
|
pm2mpfo.e |
|- .^ = ( .g ` ( mulGrp ` Q ) ) |
6 |
|
pm2mpfo.x |
|- X = ( var1 ` A ) |
7 |
|
pm2mpfo.a |
|- A = ( N Mat R ) |
8 |
|
pm2mpfo.q |
|- Q = ( Poly1 ` A ) |
9 |
|
pm2mpfo.l |
|- L = ( Base ` Q ) |
10 |
7
|
matring |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
11 |
10
|
3adant3 |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> A e. Ring ) |
12 |
11
|
adantr |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. NN0 ) -> A e. Ring ) |
13 |
|
simpl2 |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. NN0 ) -> R e. Ring ) |
14 |
|
simpl3 |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. NN0 ) -> M e. B ) |
15 |
|
simpr |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. NN0 ) -> K e. NN0 ) |
16 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
17 |
1 2 3 7 16
|
decpmatcl |
|- ( ( R e. Ring /\ M e. B /\ K e. NN0 ) -> ( M decompPMat K ) e. ( Base ` A ) ) |
18 |
13 14 15 17
|
syl3anc |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. NN0 ) -> ( M decompPMat K ) e. ( Base ` A ) ) |
19 |
|
eqid |
|- ( mulGrp ` Q ) = ( mulGrp ` Q ) |
20 |
16 8 6 4 19 5 9
|
ply1tmcl |
|- ( ( A e. Ring /\ ( M decompPMat K ) e. ( Base ` A ) /\ K e. NN0 ) -> ( ( M decompPMat K ) .* ( K .^ X ) ) e. L ) |
21 |
12 18 15 20
|
syl3anc |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. NN0 ) -> ( ( M decompPMat K ) .* ( K .^ X ) ) e. L ) |