Step |
Hyp |
Ref |
Expression |
1 |
|
pm2mpfo.p |
|- P = ( Poly1 ` R ) |
2 |
|
pm2mpfo.c |
|- C = ( N Mat P ) |
3 |
|
pm2mpfo.b |
|- B = ( Base ` C ) |
4 |
|
pm2mpfo.m |
|- .* = ( .s ` Q ) |
5 |
|
pm2mpfo.e |
|- .^ = ( .g ` ( mulGrp ` Q ) ) |
6 |
|
pm2mpfo.x |
|- X = ( var1 ` A ) |
7 |
|
pm2mpfo.a |
|- A = ( N Mat R ) |
8 |
|
pm2mpfo.q |
|- Q = ( Poly1 ` A ) |
9 |
|
nn0ex |
|- NN0 e. _V |
10 |
9
|
a1i |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> NN0 e. _V ) |
11 |
7
|
matring |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
12 |
11
|
3adant3 |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> A e. Ring ) |
13 |
8
|
ply1lmod |
|- ( A e. Ring -> Q e. LMod ) |
14 |
12 13
|
syl |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> Q e. LMod ) |
15 |
8
|
ply1sca |
|- ( A e. Ring -> A = ( Scalar ` Q ) ) |
16 |
12 15
|
syl |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> A = ( Scalar ` Q ) ) |
17 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
18 |
|
simpl2 |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ k e. NN0 ) -> R e. Ring ) |
19 |
|
simpl3 |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ k e. NN0 ) -> M e. B ) |
20 |
|
simpr |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ k e. NN0 ) -> k e. NN0 ) |
21 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
22 |
1 2 3 7 21
|
decpmatcl |
|- ( ( R e. Ring /\ M e. B /\ k e. NN0 ) -> ( M decompPMat k ) e. ( Base ` A ) ) |
23 |
18 19 20 22
|
syl3anc |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ k e. NN0 ) -> ( M decompPMat k ) e. ( Base ` A ) ) |
24 |
|
eqid |
|- ( mulGrp ` Q ) = ( mulGrp ` Q ) |
25 |
8 6 24 5 17
|
ply1moncl |
|- ( ( A e. Ring /\ k e. NN0 ) -> ( k .^ X ) e. ( Base ` Q ) ) |
26 |
12 25
|
sylan |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ k e. NN0 ) -> ( k .^ X ) e. ( Base ` Q ) ) |
27 |
|
eqid |
|- ( 0g ` Q ) = ( 0g ` Q ) |
28 |
|
eqid |
|- ( 0g ` A ) = ( 0g ` A ) |
29 |
1 2 3 7 28
|
decpmatfsupp |
|- ( ( R e. Ring /\ M e. B ) -> ( k e. NN0 |-> ( M decompPMat k ) ) finSupp ( 0g ` A ) ) |
30 |
29
|
3adant1 |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( k e. NN0 |-> ( M decompPMat k ) ) finSupp ( 0g ` A ) ) |
31 |
10 14 16 17 23 26 27 28 4 30
|
mptscmfsupp0 |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) finSupp ( 0g ` Q ) ) |