| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pm2mpfo.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
pm2mpfo.c |
|- C = ( N Mat P ) |
| 3 |
|
pm2mpfo.b |
|- B = ( Base ` C ) |
| 4 |
|
pm2mpfo.m |
|- .* = ( .s ` Q ) |
| 5 |
|
pm2mpfo.e |
|- .^ = ( .g ` ( mulGrp ` Q ) ) |
| 6 |
|
pm2mpfo.x |
|- X = ( var1 ` A ) |
| 7 |
|
pm2mpfo.a |
|- A = ( N Mat R ) |
| 8 |
|
pm2mpfo.q |
|- Q = ( Poly1 ` A ) |
| 9 |
|
nn0ex |
|- NN0 e. _V |
| 10 |
9
|
a1i |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> NN0 e. _V ) |
| 11 |
7
|
matring |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
| 12 |
11
|
3adant3 |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> A e. Ring ) |
| 13 |
8
|
ply1lmod |
|- ( A e. Ring -> Q e. LMod ) |
| 14 |
12 13
|
syl |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> Q e. LMod ) |
| 15 |
8
|
ply1sca |
|- ( A e. Ring -> A = ( Scalar ` Q ) ) |
| 16 |
12 15
|
syl |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> A = ( Scalar ` Q ) ) |
| 17 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
| 18 |
|
simpl2 |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ k e. NN0 ) -> R e. Ring ) |
| 19 |
|
simpl3 |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ k e. NN0 ) -> M e. B ) |
| 20 |
|
simpr |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ k e. NN0 ) -> k e. NN0 ) |
| 21 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
| 22 |
1 2 3 7 21
|
decpmatcl |
|- ( ( R e. Ring /\ M e. B /\ k e. NN0 ) -> ( M decompPMat k ) e. ( Base ` A ) ) |
| 23 |
18 19 20 22
|
syl3anc |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ k e. NN0 ) -> ( M decompPMat k ) e. ( Base ` A ) ) |
| 24 |
|
eqid |
|- ( mulGrp ` Q ) = ( mulGrp ` Q ) |
| 25 |
8 6 24 5 17
|
ply1moncl |
|- ( ( A e. Ring /\ k e. NN0 ) -> ( k .^ X ) e. ( Base ` Q ) ) |
| 26 |
12 25
|
sylan |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ k e. NN0 ) -> ( k .^ X ) e. ( Base ` Q ) ) |
| 27 |
|
eqid |
|- ( 0g ` Q ) = ( 0g ` Q ) |
| 28 |
|
eqid |
|- ( 0g ` A ) = ( 0g ` A ) |
| 29 |
1 2 3 7 28
|
decpmatfsupp |
|- ( ( R e. Ring /\ M e. B ) -> ( k e. NN0 |-> ( M decompPMat k ) ) finSupp ( 0g ` A ) ) |
| 30 |
29
|
3adant1 |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( k e. NN0 |-> ( M decompPMat k ) ) finSupp ( 0g ` A ) ) |
| 31 |
10 14 16 17 23 26 27 28 4 30
|
mptscmfsupp0 |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) finSupp ( 0g ` Q ) ) |