Description: The transformation of polynomial matrices into polynomials over matrices is an additive group isomorphism. (Contributed by AV, 17-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pm2mpfo.p | |- P = ( Poly1 ` R ) |
|
pm2mpfo.c | |- C = ( N Mat P ) |
||
pm2mpfo.b | |- B = ( Base ` C ) |
||
pm2mpfo.m | |- .* = ( .s ` Q ) |
||
pm2mpfo.e | |- .^ = ( .g ` ( mulGrp ` Q ) ) |
||
pm2mpfo.x | |- X = ( var1 ` A ) |
||
pm2mpfo.a | |- A = ( N Mat R ) |
||
pm2mpfo.q | |- Q = ( Poly1 ` A ) |
||
pm2mpfo.l | |- L = ( Base ` Q ) |
||
pm2mpfo.t | |- T = ( N pMatToMatPoly R ) |
||
Assertion | pm2mpgrpiso | |- ( ( N e. Fin /\ R e. Ring ) -> T e. ( C GrpIso Q ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2mpfo.p | |- P = ( Poly1 ` R ) |
|
2 | pm2mpfo.c | |- C = ( N Mat P ) |
|
3 | pm2mpfo.b | |- B = ( Base ` C ) |
|
4 | pm2mpfo.m | |- .* = ( .s ` Q ) |
|
5 | pm2mpfo.e | |- .^ = ( .g ` ( mulGrp ` Q ) ) |
|
6 | pm2mpfo.x | |- X = ( var1 ` A ) |
|
7 | pm2mpfo.a | |- A = ( N Mat R ) |
|
8 | pm2mpfo.q | |- Q = ( Poly1 ` A ) |
|
9 | pm2mpfo.l | |- L = ( Base ` Q ) |
|
10 | pm2mpfo.t | |- T = ( N pMatToMatPoly R ) |
|
11 | 1 2 3 4 5 6 7 8 9 10 | pm2mpghm | |- ( ( N e. Fin /\ R e. Ring ) -> T e. ( C GrpHom Q ) ) |
12 | eqid | |- ( Base ` Q ) = ( Base ` Q ) |
|
13 | 1 2 3 4 5 6 7 8 12 10 | pm2mpf1o | |- ( ( N e. Fin /\ R e. Ring ) -> T : B -1-1-onto-> ( Base ` Q ) ) |
14 | 3 12 | isgim | |- ( T e. ( C GrpIso Q ) <-> ( T e. ( C GrpHom Q ) /\ T : B -1-1-onto-> ( Base ` Q ) ) ) |
15 | 11 13 14 | sylanbrc | |- ( ( N e. Fin /\ R e. Ring ) -> T e. ( C GrpIso Q ) ) |