| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pm2mpfo.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
pm2mpfo.c |
|- C = ( N Mat P ) |
| 3 |
|
pm2mpfo.b |
|- B = ( Base ` C ) |
| 4 |
|
pm2mpfo.m |
|- .* = ( .s ` Q ) |
| 5 |
|
pm2mpfo.e |
|- .^ = ( .g ` ( mulGrp ` Q ) ) |
| 6 |
|
pm2mpfo.x |
|- X = ( var1 ` A ) |
| 7 |
|
pm2mpfo.a |
|- A = ( N Mat R ) |
| 8 |
|
pm2mpfo.q |
|- Q = ( Poly1 ` A ) |
| 9 |
|
pm2mpfo.l |
|- L = ( Base ` Q ) |
| 10 |
|
pm2mpfo.t |
|- T = ( N pMatToMatPoly R ) |
| 11 |
1 2 3 4 5 6 7 8 9 10
|
pm2mpghm |
|- ( ( N e. Fin /\ R e. Ring ) -> T e. ( C GrpHom Q ) ) |
| 12 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
| 13 |
1 2 3 4 5 6 7 8 12 10
|
pm2mpf1o |
|- ( ( N e. Fin /\ R e. Ring ) -> T : B -1-1-onto-> ( Base ` Q ) ) |
| 14 |
3 12
|
isgim |
|- ( T e. ( C GrpIso Q ) <-> ( T e. ( C GrpHom Q ) /\ T : B -1-1-onto-> ( Base ` Q ) ) ) |
| 15 |
11 13 14
|
sylanbrc |
|- ( ( N e. Fin /\ R e. Ring ) -> T e. ( C GrpIso Q ) ) |