Step |
Hyp |
Ref |
Expression |
1 |
|
pm2mpmhm.p |
|- P = ( Poly1 ` R ) |
2 |
|
pm2mpmhm.c |
|- C = ( N Mat P ) |
3 |
|
pm2mpmhm.a |
|- A = ( N Mat R ) |
4 |
|
pm2mpmhm.q |
|- Q = ( Poly1 ` A ) |
5 |
|
pm2mpmhm.t |
|- T = ( N pMatToMatPoly R ) |
6 |
1 2
|
pmatring |
|- ( ( N e. Fin /\ R e. Ring ) -> C e. Ring ) |
7 |
|
eqid |
|- ( mulGrp ` C ) = ( mulGrp ` C ) |
8 |
7
|
ringmgp |
|- ( C e. Ring -> ( mulGrp ` C ) e. Mnd ) |
9 |
6 8
|
syl |
|- ( ( N e. Fin /\ R e. Ring ) -> ( mulGrp ` C ) e. Mnd ) |
10 |
3
|
matring |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
11 |
4
|
ply1ring |
|- ( A e. Ring -> Q e. Ring ) |
12 |
|
eqid |
|- ( mulGrp ` Q ) = ( mulGrp ` Q ) |
13 |
12
|
ringmgp |
|- ( Q e. Ring -> ( mulGrp ` Q ) e. Mnd ) |
14 |
10 11 13
|
3syl |
|- ( ( N e. Fin /\ R e. Ring ) -> ( mulGrp ` Q ) e. Mnd ) |
15 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
16 |
7 15
|
mgpbas |
|- ( Base ` C ) = ( Base ` ( mulGrp ` C ) ) |
17 |
16
|
eqcomi |
|- ( Base ` ( mulGrp ` C ) ) = ( Base ` C ) |
18 |
|
eqid |
|- ( .s ` Q ) = ( .s ` Q ) |
19 |
|
eqid |
|- ( .g ` ( mulGrp ` Q ) ) = ( .g ` ( mulGrp ` Q ) ) |
20 |
|
eqid |
|- ( var1 ` A ) = ( var1 ` A ) |
21 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
22 |
12 21
|
mgpbas |
|- ( Base ` Q ) = ( Base ` ( mulGrp ` Q ) ) |
23 |
22
|
eqcomi |
|- ( Base ` ( mulGrp ` Q ) ) = ( Base ` Q ) |
24 |
1 2 17 18 19 20 3 4 5 23
|
pm2mpf |
|- ( ( N e. Fin /\ R e. Ring ) -> T : ( Base ` ( mulGrp ` C ) ) --> ( Base ` ( mulGrp ` Q ) ) ) |
25 |
1 2 3 4 5 17
|
pm2mpmhmlem2 |
|- ( ( N e. Fin /\ R e. Ring ) -> A. x e. ( Base ` ( mulGrp ` C ) ) A. y e. ( Base ` ( mulGrp ` C ) ) ( T ` ( x ( .r ` C ) y ) ) = ( ( T ` x ) ( .r ` Q ) ( T ` y ) ) ) |
26 |
1 2 15 18 19 20 3 4 5
|
idpm2idmp |
|- ( ( N e. Fin /\ R e. Ring ) -> ( T ` ( 1r ` C ) ) = ( 1r ` Q ) ) |
27 |
24 25 26
|
3jca |
|- ( ( N e. Fin /\ R e. Ring ) -> ( T : ( Base ` ( mulGrp ` C ) ) --> ( Base ` ( mulGrp ` Q ) ) /\ A. x e. ( Base ` ( mulGrp ` C ) ) A. y e. ( Base ` ( mulGrp ` C ) ) ( T ` ( x ( .r ` C ) y ) ) = ( ( T ` x ) ( .r ` Q ) ( T ` y ) ) /\ ( T ` ( 1r ` C ) ) = ( 1r ` Q ) ) ) |
28 |
|
eqid |
|- ( Base ` ( mulGrp ` C ) ) = ( Base ` ( mulGrp ` C ) ) |
29 |
|
eqid |
|- ( Base ` ( mulGrp ` Q ) ) = ( Base ` ( mulGrp ` Q ) ) |
30 |
|
eqid |
|- ( .r ` C ) = ( .r ` C ) |
31 |
7 30
|
mgpplusg |
|- ( .r ` C ) = ( +g ` ( mulGrp ` C ) ) |
32 |
|
eqid |
|- ( .r ` Q ) = ( .r ` Q ) |
33 |
12 32
|
mgpplusg |
|- ( .r ` Q ) = ( +g ` ( mulGrp ` Q ) ) |
34 |
|
eqid |
|- ( 1r ` C ) = ( 1r ` C ) |
35 |
7 34
|
ringidval |
|- ( 1r ` C ) = ( 0g ` ( mulGrp ` C ) ) |
36 |
|
eqid |
|- ( 1r ` Q ) = ( 1r ` Q ) |
37 |
12 36
|
ringidval |
|- ( 1r ` Q ) = ( 0g ` ( mulGrp ` Q ) ) |
38 |
28 29 31 33 35 37
|
ismhm |
|- ( T e. ( ( mulGrp ` C ) MndHom ( mulGrp ` Q ) ) <-> ( ( ( mulGrp ` C ) e. Mnd /\ ( mulGrp ` Q ) e. Mnd ) /\ ( T : ( Base ` ( mulGrp ` C ) ) --> ( Base ` ( mulGrp ` Q ) ) /\ A. x e. ( Base ` ( mulGrp ` C ) ) A. y e. ( Base ` ( mulGrp ` C ) ) ( T ` ( x ( .r ` C ) y ) ) = ( ( T ` x ) ( .r ` Q ) ( T ` y ) ) /\ ( T ` ( 1r ` C ) ) = ( 1r ` Q ) ) ) ) |
39 |
9 14 27 38
|
syl21anbrc |
|- ( ( N e. Fin /\ R e. Ring ) -> T e. ( ( mulGrp ` C ) MndHom ( mulGrp ` Q ) ) ) |