Step |
Hyp |
Ref |
Expression |
1 |
|
pm2mpmhm.p |
|- P = ( Poly1 ` R ) |
2 |
|
pm2mpmhm.c |
|- C = ( N Mat P ) |
3 |
|
pm2mpmhm.a |
|- A = ( N Mat R ) |
4 |
|
pm2mpmhm.q |
|- Q = ( Poly1 ` A ) |
5 |
|
pm2mpmhm.t |
|- T = ( N pMatToMatPoly R ) |
6 |
1 2
|
pmatring |
|- ( ( N e. Fin /\ R e. Ring ) -> C e. Ring ) |
7 |
3
|
matring |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
8 |
4
|
ply1ring |
|- ( A e. Ring -> Q e. Ring ) |
9 |
7 8
|
syl |
|- ( ( N e. Fin /\ R e. Ring ) -> Q e. Ring ) |
10 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
11 |
|
eqid |
|- ( .s ` Q ) = ( .s ` Q ) |
12 |
|
eqid |
|- ( .g ` ( mulGrp ` Q ) ) = ( .g ` ( mulGrp ` Q ) ) |
13 |
|
eqid |
|- ( var1 ` A ) = ( var1 ` A ) |
14 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
15 |
1 2 10 11 12 13 3 4 14 5
|
pm2mpghm |
|- ( ( N e. Fin /\ R e. Ring ) -> T e. ( C GrpHom Q ) ) |
16 |
1 2 3 4 5
|
pm2mpmhm |
|- ( ( N e. Fin /\ R e. Ring ) -> T e. ( ( mulGrp ` C ) MndHom ( mulGrp ` Q ) ) ) |
17 |
15 16
|
jca |
|- ( ( N e. Fin /\ R e. Ring ) -> ( T e. ( C GrpHom Q ) /\ T e. ( ( mulGrp ` C ) MndHom ( mulGrp ` Q ) ) ) ) |
18 |
|
eqid |
|- ( mulGrp ` C ) = ( mulGrp ` C ) |
19 |
|
eqid |
|- ( mulGrp ` Q ) = ( mulGrp ` Q ) |
20 |
18 19
|
isrhm |
|- ( T e. ( C RingHom Q ) <-> ( ( C e. Ring /\ Q e. Ring ) /\ ( T e. ( C GrpHom Q ) /\ T e. ( ( mulGrp ` C ) MndHom ( mulGrp ` Q ) ) ) ) ) |
21 |
6 9 17 20
|
syl21anbrc |
|- ( ( N e. Fin /\ R e. Ring ) -> T e. ( C RingHom Q ) ) |