Metamath Proof Explorer


Theorem pm2mprhm

Description: The transformation of polynomial matrices into polynomials over matrices is a ring homomorphism. (Contributed by AV, 22-Oct-2019)

Ref Expression
Hypotheses pm2mpmhm.p
|- P = ( Poly1 ` R )
pm2mpmhm.c
|- C = ( N Mat P )
pm2mpmhm.a
|- A = ( N Mat R )
pm2mpmhm.q
|- Q = ( Poly1 ` A )
pm2mpmhm.t
|- T = ( N pMatToMatPoly R )
Assertion pm2mprhm
|- ( ( N e. Fin /\ R e. Ring ) -> T e. ( C RingHom Q ) )

Proof

Step Hyp Ref Expression
1 pm2mpmhm.p
 |-  P = ( Poly1 ` R )
2 pm2mpmhm.c
 |-  C = ( N Mat P )
3 pm2mpmhm.a
 |-  A = ( N Mat R )
4 pm2mpmhm.q
 |-  Q = ( Poly1 ` A )
5 pm2mpmhm.t
 |-  T = ( N pMatToMatPoly R )
6 1 2 pmatring
 |-  ( ( N e. Fin /\ R e. Ring ) -> C e. Ring )
7 3 matring
 |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring )
8 4 ply1ring
 |-  ( A e. Ring -> Q e. Ring )
9 7 8 syl
 |-  ( ( N e. Fin /\ R e. Ring ) -> Q e. Ring )
10 eqid
 |-  ( Base ` C ) = ( Base ` C )
11 eqid
 |-  ( .s ` Q ) = ( .s ` Q )
12 eqid
 |-  ( .g ` ( mulGrp ` Q ) ) = ( .g ` ( mulGrp ` Q ) )
13 eqid
 |-  ( var1 ` A ) = ( var1 ` A )
14 eqid
 |-  ( Base ` Q ) = ( Base ` Q )
15 1 2 10 11 12 13 3 4 14 5 pm2mpghm
 |-  ( ( N e. Fin /\ R e. Ring ) -> T e. ( C GrpHom Q ) )
16 1 2 3 4 5 pm2mpmhm
 |-  ( ( N e. Fin /\ R e. Ring ) -> T e. ( ( mulGrp ` C ) MndHom ( mulGrp ` Q ) ) )
17 15 16 jca
 |-  ( ( N e. Fin /\ R e. Ring ) -> ( T e. ( C GrpHom Q ) /\ T e. ( ( mulGrp ` C ) MndHom ( mulGrp ` Q ) ) ) )
18 eqid
 |-  ( mulGrp ` C ) = ( mulGrp ` C )
19 eqid
 |-  ( mulGrp ` Q ) = ( mulGrp ` Q )
20 18 19 isrhm
 |-  ( T e. ( C RingHom Q ) <-> ( ( C e. Ring /\ Q e. Ring ) /\ ( T e. ( C GrpHom Q ) /\ T e. ( ( mulGrp ` C ) MndHom ( mulGrp ` Q ) ) ) ) )
21 6 9 17 20 syl21anbrc
 |-  ( ( N e. Fin /\ R e. Ring ) -> T e. ( C RingHom Q ) )