Metamath Proof Explorer


Theorem pm2mpval

Description: Value of the transformation of a polynomial matrix into a polynomial over matrices. (Contributed by AV, 5-Dec-2019)

Ref Expression
Hypotheses pm2mpval.p
|- P = ( Poly1 ` R )
pm2mpval.c
|- C = ( N Mat P )
pm2mpval.b
|- B = ( Base ` C )
pm2mpval.m
|- .* = ( .s ` Q )
pm2mpval.e
|- .^ = ( .g ` ( mulGrp ` Q ) )
pm2mpval.x
|- X = ( var1 ` A )
pm2mpval.a
|- A = ( N Mat R )
pm2mpval.q
|- Q = ( Poly1 ` A )
pm2mpval.t
|- T = ( N pMatToMatPoly R )
Assertion pm2mpval
|- ( ( N e. Fin /\ R e. V ) -> T = ( m e. B |-> ( Q gsum ( k e. NN0 |-> ( ( m decompPMat k ) .* ( k .^ X ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 pm2mpval.p
 |-  P = ( Poly1 ` R )
2 pm2mpval.c
 |-  C = ( N Mat P )
3 pm2mpval.b
 |-  B = ( Base ` C )
4 pm2mpval.m
 |-  .* = ( .s ` Q )
5 pm2mpval.e
 |-  .^ = ( .g ` ( mulGrp ` Q ) )
6 pm2mpval.x
 |-  X = ( var1 ` A )
7 pm2mpval.a
 |-  A = ( N Mat R )
8 pm2mpval.q
 |-  Q = ( Poly1 ` A )
9 pm2mpval.t
 |-  T = ( N pMatToMatPoly R )
10 df-pm2mp
 |-  pMatToMatPoly = ( n e. Fin , r e. _V |-> ( m e. ( Base ` ( n Mat ( Poly1 ` r ) ) ) |-> [_ ( n Mat r ) / a ]_ [_ ( Poly1 ` a ) / q ]_ ( q gsum ( k e. NN0 |-> ( ( m decompPMat k ) ( .s ` q ) ( k ( .g ` ( mulGrp ` q ) ) ( var1 ` a ) ) ) ) ) ) )
11 10 a1i
 |-  ( ( N e. Fin /\ R e. V ) -> pMatToMatPoly = ( n e. Fin , r e. _V |-> ( m e. ( Base ` ( n Mat ( Poly1 ` r ) ) ) |-> [_ ( n Mat r ) / a ]_ [_ ( Poly1 ` a ) / q ]_ ( q gsum ( k e. NN0 |-> ( ( m decompPMat k ) ( .s ` q ) ( k ( .g ` ( mulGrp ` q ) ) ( var1 ` a ) ) ) ) ) ) ) )
12 simpl
 |-  ( ( n = N /\ r = R ) -> n = N )
13 fveq2
 |-  ( r = R -> ( Poly1 ` r ) = ( Poly1 ` R ) )
14 13 adantl
 |-  ( ( n = N /\ r = R ) -> ( Poly1 ` r ) = ( Poly1 ` R ) )
15 12 14 oveq12d
 |-  ( ( n = N /\ r = R ) -> ( n Mat ( Poly1 ` r ) ) = ( N Mat ( Poly1 ` R ) ) )
16 15 fveq2d
 |-  ( ( n = N /\ r = R ) -> ( Base ` ( n Mat ( Poly1 ` r ) ) ) = ( Base ` ( N Mat ( Poly1 ` R ) ) ) )
17 1 oveq2i
 |-  ( N Mat P ) = ( N Mat ( Poly1 ` R ) )
18 2 17 eqtri
 |-  C = ( N Mat ( Poly1 ` R ) )
19 18 fveq2i
 |-  ( Base ` C ) = ( Base ` ( N Mat ( Poly1 ` R ) ) )
20 3 19 eqtri
 |-  B = ( Base ` ( N Mat ( Poly1 ` R ) ) )
21 16 20 eqtr4di
 |-  ( ( n = N /\ r = R ) -> ( Base ` ( n Mat ( Poly1 ` r ) ) ) = B )
22 21 adantl
 |-  ( ( ( N e. Fin /\ R e. V ) /\ ( n = N /\ r = R ) ) -> ( Base ` ( n Mat ( Poly1 ` r ) ) ) = B )
23 ovex
 |-  ( n Mat r ) e. _V
24 fvexd
 |-  ( a = ( n Mat r ) -> ( Poly1 ` a ) e. _V )
25 simpr
 |-  ( ( a = ( n Mat r ) /\ q = ( Poly1 ` a ) ) -> q = ( Poly1 ` a ) )
26 fveq2
 |-  ( a = ( n Mat r ) -> ( Poly1 ` a ) = ( Poly1 ` ( n Mat r ) ) )
27 26 adantr
 |-  ( ( a = ( n Mat r ) /\ q = ( Poly1 ` a ) ) -> ( Poly1 ` a ) = ( Poly1 ` ( n Mat r ) ) )
28 25 27 eqtrd
 |-  ( ( a = ( n Mat r ) /\ q = ( Poly1 ` a ) ) -> q = ( Poly1 ` ( n Mat r ) ) )
29 28 fveq2d
 |-  ( ( a = ( n Mat r ) /\ q = ( Poly1 ` a ) ) -> ( .s ` q ) = ( .s ` ( Poly1 ` ( n Mat r ) ) ) )
30 eqidd
 |-  ( ( a = ( n Mat r ) /\ q = ( Poly1 ` a ) ) -> ( m decompPMat k ) = ( m decompPMat k ) )
31 28 fveq2d
 |-  ( ( a = ( n Mat r ) /\ q = ( Poly1 ` a ) ) -> ( mulGrp ` q ) = ( mulGrp ` ( Poly1 ` ( n Mat r ) ) ) )
32 31 fveq2d
 |-  ( ( a = ( n Mat r ) /\ q = ( Poly1 ` a ) ) -> ( .g ` ( mulGrp ` q ) ) = ( .g ` ( mulGrp ` ( Poly1 ` ( n Mat r ) ) ) ) )
33 eqidd
 |-  ( ( a = ( n Mat r ) /\ q = ( Poly1 ` a ) ) -> k = k )
34 fveq2
 |-  ( a = ( n Mat r ) -> ( var1 ` a ) = ( var1 ` ( n Mat r ) ) )
35 34 adantr
 |-  ( ( a = ( n Mat r ) /\ q = ( Poly1 ` a ) ) -> ( var1 ` a ) = ( var1 ` ( n Mat r ) ) )
36 32 33 35 oveq123d
 |-  ( ( a = ( n Mat r ) /\ q = ( Poly1 ` a ) ) -> ( k ( .g ` ( mulGrp ` q ) ) ( var1 ` a ) ) = ( k ( .g ` ( mulGrp ` ( Poly1 ` ( n Mat r ) ) ) ) ( var1 ` ( n Mat r ) ) ) )
37 29 30 36 oveq123d
 |-  ( ( a = ( n Mat r ) /\ q = ( Poly1 ` a ) ) -> ( ( m decompPMat k ) ( .s ` q ) ( k ( .g ` ( mulGrp ` q ) ) ( var1 ` a ) ) ) = ( ( m decompPMat k ) ( .s ` ( Poly1 ` ( n Mat r ) ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` ( n Mat r ) ) ) ) ( var1 ` ( n Mat r ) ) ) ) )
38 37 mpteq2dv
 |-  ( ( a = ( n Mat r ) /\ q = ( Poly1 ` a ) ) -> ( k e. NN0 |-> ( ( m decompPMat k ) ( .s ` q ) ( k ( .g ` ( mulGrp ` q ) ) ( var1 ` a ) ) ) ) = ( k e. NN0 |-> ( ( m decompPMat k ) ( .s ` ( Poly1 ` ( n Mat r ) ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` ( n Mat r ) ) ) ) ( var1 ` ( n Mat r ) ) ) ) ) )
39 28 38 oveq12d
 |-  ( ( a = ( n Mat r ) /\ q = ( Poly1 ` a ) ) -> ( q gsum ( k e. NN0 |-> ( ( m decompPMat k ) ( .s ` q ) ( k ( .g ` ( mulGrp ` q ) ) ( var1 ` a ) ) ) ) ) = ( ( Poly1 ` ( n Mat r ) ) gsum ( k e. NN0 |-> ( ( m decompPMat k ) ( .s ` ( Poly1 ` ( n Mat r ) ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` ( n Mat r ) ) ) ) ( var1 ` ( n Mat r ) ) ) ) ) ) )
40 24 39 csbied
 |-  ( a = ( n Mat r ) -> [_ ( Poly1 ` a ) / q ]_ ( q gsum ( k e. NN0 |-> ( ( m decompPMat k ) ( .s ` q ) ( k ( .g ` ( mulGrp ` q ) ) ( var1 ` a ) ) ) ) ) = ( ( Poly1 ` ( n Mat r ) ) gsum ( k e. NN0 |-> ( ( m decompPMat k ) ( .s ` ( Poly1 ` ( n Mat r ) ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` ( n Mat r ) ) ) ) ( var1 ` ( n Mat r ) ) ) ) ) ) )
41 23 40 csbie
 |-  [_ ( n Mat r ) / a ]_ [_ ( Poly1 ` a ) / q ]_ ( q gsum ( k e. NN0 |-> ( ( m decompPMat k ) ( .s ` q ) ( k ( .g ` ( mulGrp ` q ) ) ( var1 ` a ) ) ) ) ) = ( ( Poly1 ` ( n Mat r ) ) gsum ( k e. NN0 |-> ( ( m decompPMat k ) ( .s ` ( Poly1 ` ( n Mat r ) ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` ( n Mat r ) ) ) ) ( var1 ` ( n Mat r ) ) ) ) ) )
42 oveq12
 |-  ( ( n = N /\ r = R ) -> ( n Mat r ) = ( N Mat R ) )
43 42 fveq2d
 |-  ( ( n = N /\ r = R ) -> ( Poly1 ` ( n Mat r ) ) = ( Poly1 ` ( N Mat R ) ) )
44 7 fveq2i
 |-  ( Poly1 ` A ) = ( Poly1 ` ( N Mat R ) )
45 8 44 eqtri
 |-  Q = ( Poly1 ` ( N Mat R ) )
46 43 45 eqtr4di
 |-  ( ( n = N /\ r = R ) -> ( Poly1 ` ( n Mat r ) ) = Q )
47 43 fveq2d
 |-  ( ( n = N /\ r = R ) -> ( .s ` ( Poly1 ` ( n Mat r ) ) ) = ( .s ` ( Poly1 ` ( N Mat R ) ) ) )
48 45 fveq2i
 |-  ( .s ` Q ) = ( .s ` ( Poly1 ` ( N Mat R ) ) )
49 4 48 eqtri
 |-  .* = ( .s ` ( Poly1 ` ( N Mat R ) ) )
50 47 49 eqtr4di
 |-  ( ( n = N /\ r = R ) -> ( .s ` ( Poly1 ` ( n Mat r ) ) ) = .* )
51 eqidd
 |-  ( ( n = N /\ r = R ) -> ( m decompPMat k ) = ( m decompPMat k ) )
52 43 fveq2d
 |-  ( ( n = N /\ r = R ) -> ( mulGrp ` ( Poly1 ` ( n Mat r ) ) ) = ( mulGrp ` ( Poly1 ` ( N Mat R ) ) ) )
53 52 fveq2d
 |-  ( ( n = N /\ r = R ) -> ( .g ` ( mulGrp ` ( Poly1 ` ( n Mat r ) ) ) ) = ( .g ` ( mulGrp ` ( Poly1 ` ( N Mat R ) ) ) ) )
54 45 fveq2i
 |-  ( mulGrp ` Q ) = ( mulGrp ` ( Poly1 ` ( N Mat R ) ) )
55 54 fveq2i
 |-  ( .g ` ( mulGrp ` Q ) ) = ( .g ` ( mulGrp ` ( Poly1 ` ( N Mat R ) ) ) )
56 5 55 eqtri
 |-  .^ = ( .g ` ( mulGrp ` ( Poly1 ` ( N Mat R ) ) ) )
57 53 56 eqtr4di
 |-  ( ( n = N /\ r = R ) -> ( .g ` ( mulGrp ` ( Poly1 ` ( n Mat r ) ) ) ) = .^ )
58 eqidd
 |-  ( ( n = N /\ r = R ) -> k = k )
59 42 fveq2d
 |-  ( ( n = N /\ r = R ) -> ( var1 ` ( n Mat r ) ) = ( var1 ` ( N Mat R ) ) )
60 7 fveq2i
 |-  ( var1 ` A ) = ( var1 ` ( N Mat R ) )
61 6 60 eqtri
 |-  X = ( var1 ` ( N Mat R ) )
62 59 61 eqtr4di
 |-  ( ( n = N /\ r = R ) -> ( var1 ` ( n Mat r ) ) = X )
63 57 58 62 oveq123d
 |-  ( ( n = N /\ r = R ) -> ( k ( .g ` ( mulGrp ` ( Poly1 ` ( n Mat r ) ) ) ) ( var1 ` ( n Mat r ) ) ) = ( k .^ X ) )
64 50 51 63 oveq123d
 |-  ( ( n = N /\ r = R ) -> ( ( m decompPMat k ) ( .s ` ( Poly1 ` ( n Mat r ) ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` ( n Mat r ) ) ) ) ( var1 ` ( n Mat r ) ) ) ) = ( ( m decompPMat k ) .* ( k .^ X ) ) )
65 64 mpteq2dv
 |-  ( ( n = N /\ r = R ) -> ( k e. NN0 |-> ( ( m decompPMat k ) ( .s ` ( Poly1 ` ( n Mat r ) ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` ( n Mat r ) ) ) ) ( var1 ` ( n Mat r ) ) ) ) ) = ( k e. NN0 |-> ( ( m decompPMat k ) .* ( k .^ X ) ) ) )
66 46 65 oveq12d
 |-  ( ( n = N /\ r = R ) -> ( ( Poly1 ` ( n Mat r ) ) gsum ( k e. NN0 |-> ( ( m decompPMat k ) ( .s ` ( Poly1 ` ( n Mat r ) ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` ( n Mat r ) ) ) ) ( var1 ` ( n Mat r ) ) ) ) ) ) = ( Q gsum ( k e. NN0 |-> ( ( m decompPMat k ) .* ( k .^ X ) ) ) ) )
67 66 adantl
 |-  ( ( ( N e. Fin /\ R e. V ) /\ ( n = N /\ r = R ) ) -> ( ( Poly1 ` ( n Mat r ) ) gsum ( k e. NN0 |-> ( ( m decompPMat k ) ( .s ` ( Poly1 ` ( n Mat r ) ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` ( n Mat r ) ) ) ) ( var1 ` ( n Mat r ) ) ) ) ) ) = ( Q gsum ( k e. NN0 |-> ( ( m decompPMat k ) .* ( k .^ X ) ) ) ) )
68 41 67 eqtrid
 |-  ( ( ( N e. Fin /\ R e. V ) /\ ( n = N /\ r = R ) ) -> [_ ( n Mat r ) / a ]_ [_ ( Poly1 ` a ) / q ]_ ( q gsum ( k e. NN0 |-> ( ( m decompPMat k ) ( .s ` q ) ( k ( .g ` ( mulGrp ` q ) ) ( var1 ` a ) ) ) ) ) = ( Q gsum ( k e. NN0 |-> ( ( m decompPMat k ) .* ( k .^ X ) ) ) ) )
69 22 68 mpteq12dv
 |-  ( ( ( N e. Fin /\ R e. V ) /\ ( n = N /\ r = R ) ) -> ( m e. ( Base ` ( n Mat ( Poly1 ` r ) ) ) |-> [_ ( n Mat r ) / a ]_ [_ ( Poly1 ` a ) / q ]_ ( q gsum ( k e. NN0 |-> ( ( m decompPMat k ) ( .s ` q ) ( k ( .g ` ( mulGrp ` q ) ) ( var1 ` a ) ) ) ) ) ) = ( m e. B |-> ( Q gsum ( k e. NN0 |-> ( ( m decompPMat k ) .* ( k .^ X ) ) ) ) ) )
70 simpl
 |-  ( ( N e. Fin /\ R e. V ) -> N e. Fin )
71 elex
 |-  ( R e. V -> R e. _V )
72 71 adantl
 |-  ( ( N e. Fin /\ R e. V ) -> R e. _V )
73 3 fvexi
 |-  B e. _V
74 73 mptex
 |-  ( m e. B |-> ( Q gsum ( k e. NN0 |-> ( ( m decompPMat k ) .* ( k .^ X ) ) ) ) ) e. _V
75 74 a1i
 |-  ( ( N e. Fin /\ R e. V ) -> ( m e. B |-> ( Q gsum ( k e. NN0 |-> ( ( m decompPMat k ) .* ( k .^ X ) ) ) ) ) e. _V )
76 11 69 70 72 75 ovmpod
 |-  ( ( N e. Fin /\ R e. V ) -> ( N pMatToMatPoly R ) = ( m e. B |-> ( Q gsum ( k e. NN0 |-> ( ( m decompPMat k ) .* ( k .^ X ) ) ) ) ) )
77 9 76 eqtrid
 |-  ( ( N e. Fin /\ R e. V ) -> T = ( m e. B |-> ( Q gsum ( k e. NN0 |-> ( ( m decompPMat k ) .* ( k .^ X ) ) ) ) ) )