Metamath Proof Explorer


Theorem pm3.12

Description: Theorem *3.12 of WhiteheadRussell p. 111. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm3.12
|- ( ( -. ph \/ -. ps ) \/ ( ph /\ ps ) )

Proof

Step Hyp Ref Expression
1 pm3.11
 |-  ( -. ( -. ph \/ -. ps ) -> ( ph /\ ps ) )
2 1 orri
 |-  ( ( -. ph \/ -. ps ) \/ ( ph /\ ps ) )