Description: Theorem *3.37 (Transp) of WhiteheadRussell p. 112. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 23-Oct-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | pm3.37 | |- ( ( ( ph /\ ps ) -> ch ) -> ( ( ph /\ -. ch ) -> -. ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.14 | |- ( ( ( ph /\ ps ) -> ch ) <-> ( ( ph /\ -. ch ) -> -. ps ) ) |
|
2 | 1 | biimpi | |- ( ( ( ph /\ ps ) -> ch ) -> ( ( ph /\ -. ch ) -> -. ps ) ) |