Metamath Proof Explorer


Theorem pm3.43

Description: Theorem *3.43 (Comp) of WhiteheadRussell p. 113. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm3.43
|- ( ( ( ph -> ps ) /\ ( ph -> ch ) ) -> ( ph -> ( ps /\ ch ) ) )

Proof

Step Hyp Ref Expression
1 pm3.43i
 |-  ( ( ph -> ps ) -> ( ( ph -> ch ) -> ( ph -> ( ps /\ ch ) ) ) )
2 1 imp
 |-  ( ( ( ph -> ps ) /\ ( ph -> ch ) ) -> ( ph -> ( ps /\ ch ) ) )