Metamath Proof Explorer


Theorem pm3.44

Description: Theorem *3.44 of WhiteheadRussell p. 113. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 3-Oct-2013)

Ref Expression
Assertion pm3.44
|- ( ( ( ps -> ph ) /\ ( ch -> ph ) ) -> ( ( ps \/ ch ) -> ph ) )

Proof

Step Hyp Ref Expression
1 id
 |-  ( ( ps -> ph ) -> ( ps -> ph ) )
2 id
 |-  ( ( ch -> ph ) -> ( ch -> ph ) )
3 1 2 jaao
 |-  ( ( ( ps -> ph ) /\ ( ch -> ph ) ) -> ( ( ps \/ ch ) -> ph ) )