Description: Theorem *3.48 of WhiteheadRussell p. 114. (Contributed by NM, 28-Jan-1997)
Ref | Expression | ||
---|---|---|---|
Assertion | pm3.48 | |- ( ( ( ph -> ps ) /\ ( ch -> th ) ) -> ( ( ph \/ ch ) -> ( ps \/ th ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc | |- ( ps -> ( ps \/ th ) ) |
|
2 | 1 | imim2i | |- ( ( ph -> ps ) -> ( ph -> ( ps \/ th ) ) ) |
3 | olc | |- ( th -> ( ps \/ th ) ) |
|
4 | 3 | imim2i | |- ( ( ch -> th ) -> ( ch -> ( ps \/ th ) ) ) |
5 | 2 4 | jaao | |- ( ( ( ph -> ps ) /\ ( ch -> th ) ) -> ( ( ph \/ ch ) -> ( ps \/ th ) ) ) |