Description: Theorem *4.43 of WhiteheadRussell p. 119. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 26-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | pm4.43 | |- ( ph <-> ( ( ph \/ ps ) /\ ( ph \/ -. ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.24 | |- -. ( ps /\ -. ps ) |
|
2 | 1 | biorfi | |- ( ph <-> ( ph \/ ( ps /\ -. ps ) ) ) |
3 | ordi | |- ( ( ph \/ ( ps /\ -. ps ) ) <-> ( ( ph \/ ps ) /\ ( ph \/ -. ps ) ) ) |
|
4 | 2 3 | bitri | |- ( ph <-> ( ( ph \/ ps ) /\ ( ph \/ -. ps ) ) ) |