Description: Theorem *4.52 of WhiteheadRussell p. 120. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 5-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | pm4.52 | |- ( ( ph /\ -. ps ) <-> -. ( -. ph \/ ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | annim | |- ( ( ph /\ -. ps ) <-> -. ( ph -> ps ) ) |
|
2 | imor | |- ( ( ph -> ps ) <-> ( -. ph \/ ps ) ) |
|
3 | 1 2 | xchbinx | |- ( ( ph /\ -. ps ) <-> -. ( -. ph \/ ps ) ) |