Description: Theorem *4.54 of WhiteheadRussell p. 120. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 5-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | pm4.54 | |- ( ( -. ph /\ ps ) <-> -. ( ph \/ -. ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-an | |- ( ( -. ph /\ ps ) <-> -. ( -. ph -> -. ps ) ) |
|
2 | pm4.66 | |- ( ( -. ph -> -. ps ) <-> ( ph \/ -. ps ) ) |
|
3 | 1 2 | xchbinx | |- ( ( -. ph /\ ps ) <-> -. ( ph \/ -. ps ) ) |