Description: Theorem *4.55 of WhiteheadRussell p. 120. (Contributed by NM, 3-Jan-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | pm4.55 | |- ( -. ( -. ph /\ ps ) <-> ( ph \/ -. ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.54 | |- ( ( -. ph /\ ps ) <-> -. ( ph \/ -. ps ) ) |
|
2 | 1 | con2bii | |- ( ( ph \/ -. ps ) <-> -. ( -. ph /\ ps ) ) |
3 | 2 | bicomi | |- ( -. ( -. ph /\ ps ) <-> ( ph \/ -. ps ) ) |