Metamath Proof Explorer


Theorem pm4.62

Description: Theorem *4.62 of WhiteheadRussell p. 120. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm4.62
|- ( ( ph -> -. ps ) <-> ( -. ph \/ -. ps ) )

Proof

Step Hyp Ref Expression
1 imor
 |-  ( ( ph -> -. ps ) <-> ( -. ph \/ -. ps ) )