Metamath Proof Explorer


Theorem pm4.67

Description: Theorem *4.67 of WhiteheadRussell p. 120. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm4.67
|- ( -. ( -. ph -> -. ps ) <-> ( -. ph /\ ps ) )

Proof

Step Hyp Ref Expression
1 pm4.63
 |-  ( -. ( -. ph -> -. ps ) <-> ( -. ph /\ ps ) )