Metamath Proof Explorer


Theorem pm4.71r

Description: Implication in terms of biconditional and conjunction. Theorem *4.71 of WhiteheadRussell p. 120 (with conjunct reversed). (Contributed by NM, 25-Jul-1999)

Ref Expression
Assertion pm4.71r
|- ( ( ph -> ps ) <-> ( ph <-> ( ps /\ ph ) ) )

Proof

Step Hyp Ref Expression
1 pm4.71
 |-  ( ( ph -> ps ) <-> ( ph <-> ( ph /\ ps ) ) )
2 ancom
 |-  ( ( ph /\ ps ) <-> ( ps /\ ph ) )
3 2 bibi2i
 |-  ( ( ph <-> ( ph /\ ps ) ) <-> ( ph <-> ( ps /\ ph ) ) )
4 1 3 bitri
 |-  ( ( ph -> ps ) <-> ( ph <-> ( ps /\ ph ) ) )