Description: Implication in terms of biconditional and conjunction. Theorem *4.71 of WhiteheadRussell p. 120 (with conjunct reversed). (Contributed by NM, 25-Jul-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm4.71r | |- ( ( ph -> ps ) <-> ( ph <-> ( ps /\ ph ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71 | |- ( ( ph -> ps ) <-> ( ph <-> ( ph /\ ps ) ) ) |
|
| 2 | ancom | |- ( ( ph /\ ps ) <-> ( ps /\ ph ) ) |
|
| 3 | 2 | bibi2i | |- ( ( ph <-> ( ph /\ ps ) ) <-> ( ph <-> ( ps /\ ph ) ) ) |
| 4 | 1 3 | bitri | |- ( ( ph -> ps ) <-> ( ph <-> ( ps /\ ph ) ) ) |