Description: Implication distributes over disjunction. Theorem *4.78 of WhiteheadRussell p. 121. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 19-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | pm4.78 | |- ( ( ( ph -> ps ) \/ ( ph -> ch ) ) <-> ( ph -> ( ps \/ ch ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orordi | |- ( ( -. ph \/ ( ps \/ ch ) ) <-> ( ( -. ph \/ ps ) \/ ( -. ph \/ ch ) ) ) |
|
2 | imor | |- ( ( ph -> ( ps \/ ch ) ) <-> ( -. ph \/ ( ps \/ ch ) ) ) |
|
3 | imor | |- ( ( ph -> ps ) <-> ( -. ph \/ ps ) ) |
|
4 | imor | |- ( ( ph -> ch ) <-> ( -. ph \/ ch ) ) |
|
5 | 3 4 | orbi12i | |- ( ( ( ph -> ps ) \/ ( ph -> ch ) ) <-> ( ( -. ph \/ ps ) \/ ( -. ph \/ ch ) ) ) |
6 | 1 2 5 | 3bitr4ri | |- ( ( ( ph -> ps ) \/ ( ph -> ch ) ) <-> ( ph -> ( ps \/ ch ) ) ) |