Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|- ( ( ps -> ph ) -> ( ps -> ph ) ) |
2 |
|
id |
|- ( ( ch -> ph ) -> ( ch -> ph ) ) |
3 |
1 2
|
jaoa |
|- ( ( ( ps -> ph ) \/ ( ch -> ph ) ) -> ( ( ps /\ ch ) -> ph ) ) |
4 |
|
simplim |
|- ( -. ( ps -> ph ) -> ps ) |
5 |
|
pm3.3 |
|- ( ( ( ps /\ ch ) -> ph ) -> ( ps -> ( ch -> ph ) ) ) |
6 |
4 5
|
syl5 |
|- ( ( ( ps /\ ch ) -> ph ) -> ( -. ( ps -> ph ) -> ( ch -> ph ) ) ) |
7 |
6
|
orrd |
|- ( ( ( ps /\ ch ) -> ph ) -> ( ( ps -> ph ) \/ ( ch -> ph ) ) ) |
8 |
3 7
|
impbii |
|- ( ( ( ps -> ph ) \/ ( ch -> ph ) ) <-> ( ( ps /\ ch ) -> ph ) ) |