Metamath Proof Explorer


Theorem pm4.8

Description: Theorem *4.8 of WhiteheadRussell p. 122. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm4.8
|- ( ( ph -> -. ph ) <-> -. ph )

Proof

Step Hyp Ref Expression
1 pm2.01
 |-  ( ( ph -> -. ph ) -> -. ph )
2 ax-1
 |-  ( -. ph -> ( ph -> -. ph ) )
3 1 2 impbii
 |-  ( ( ph -> -. ph ) <-> -. ph )