Description: Theorem *4.82 of WhiteheadRussell p. 122. (Contributed by NM, 3-Jan-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | pm4.82 | |- ( ( ( ph -> ps ) /\ ( ph -> -. ps ) ) <-> -. ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.65 | |- ( ( ph -> ps ) -> ( ( ph -> -. ps ) -> -. ph ) ) |
|
2 | 1 | imp | |- ( ( ( ph -> ps ) /\ ( ph -> -. ps ) ) -> -. ph ) |
3 | pm2.21 | |- ( -. ph -> ( ph -> ps ) ) |
|
4 | pm2.21 | |- ( -. ph -> ( ph -> -. ps ) ) |
|
5 | 3 4 | jca | |- ( -. ph -> ( ( ph -> ps ) /\ ( ph -> -. ps ) ) ) |
6 | 2 5 | impbii | |- ( ( ( ph -> ps ) /\ ( ph -> -. ps ) ) <-> -. ph ) |