Metamath Proof Explorer


Theorem pm5.12

Description: Theorem *5.12 of WhiteheadRussell p. 123. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm5.12
|- ( ( ph -> ps ) \/ ( ph -> -. ps ) )

Proof

Step Hyp Ref Expression
1 pm2.51
 |-  ( -. ( ph -> ps ) -> ( ph -> -. ps ) )
2 1 orri
 |-  ( ( ph -> ps ) \/ ( ph -> -. ps ) )