Description: Theorem *5.15 of WhiteheadRussell p. 124. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 15-Oct-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | pm5.15 | |- ( ( ph <-> ps ) \/ ( ph <-> -. ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xor3 | |- ( -. ( ph <-> ps ) <-> ( ph <-> -. ps ) ) |
|
2 | 1 | biimpi | |- ( -. ( ph <-> ps ) -> ( ph <-> -. ps ) ) |
3 | 2 | orri | |- ( ( ph <-> ps ) \/ ( ph <-> -. ps ) ) |