Description: Theorem *5.16 of WhiteheadRussell p. 124. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 17-Oct-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | pm5.16 | |- -. ( ( ph <-> ps ) /\ ( ph <-> -. ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.18 | |- ( ( ph <-> ps ) <-> -. ( ph <-> -. ps ) ) |
|
2 | 1 | biimpi | |- ( ( ph <-> ps ) -> -. ( ph <-> -. ps ) ) |
3 | imnan | |- ( ( ( ph <-> ps ) -> -. ( ph <-> -. ps ) ) <-> -. ( ( ph <-> ps ) /\ ( ph <-> -. ps ) ) ) |
|
4 | 2 3 | mpbi | |- -. ( ( ph <-> ps ) /\ ( ph <-> -. ps ) ) |