Description: Two propositions are equivalent if they are both false. Theorem *5.21 of WhiteheadRussell p. 124. (Contributed by NM, 21-May-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | pm5.21 | |- ( ( -. ph /\ -. ps ) -> ( ph <-> ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21im | |- ( -. ph -> ( -. ps -> ( ph <-> ps ) ) ) |
|
2 | 1 | imp | |- ( ( -. ph /\ -. ps ) -> ( ph <-> ps ) ) |