Description: Theorem *5.24 of WhiteheadRussell p. 124. (Contributed by NM, 3-Jan-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | pm5.24 | |- ( -. ( ( ph /\ ps ) \/ ( -. ph /\ -. ps ) ) <-> ( ( ph /\ -. ps ) \/ ( ps /\ -. ph ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xor | |- ( -. ( ph <-> ps ) <-> ( ( ph /\ -. ps ) \/ ( ps /\ -. ph ) ) ) |
|
2 | dfbi3 | |- ( ( ph <-> ps ) <-> ( ( ph /\ ps ) \/ ( -. ph /\ -. ps ) ) ) |
|
3 | 1 2 | xchnxbi | |- ( -. ( ( ph /\ ps ) \/ ( -. ph /\ -. ps ) ) <-> ( ( ph /\ -. ps ) \/ ( ps /\ -. ph ) ) ) |