Metamath Proof Explorer


Theorem pm5.24

Description: Theorem *5.24 of WhiteheadRussell p. 124. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm5.24
|- ( -. ( ( ph /\ ps ) \/ ( -. ph /\ -. ps ) ) <-> ( ( ph /\ -. ps ) \/ ( ps /\ -. ph ) ) )

Proof

Step Hyp Ref Expression
1 xor
 |-  ( -. ( ph <-> ps ) <-> ( ( ph /\ -. ps ) \/ ( ps /\ -. ph ) ) )
2 dfbi3
 |-  ( ( ph <-> ps ) <-> ( ( ph /\ ps ) \/ ( -. ph /\ -. ps ) ) )
3 1 2 xchnxbi
 |-  ( -. ( ( ph /\ ps ) \/ ( -. ph /\ -. ps ) ) <-> ( ( ph /\ -. ps ) \/ ( ps /\ -. ph ) ) )