Description: Theorem *5.3 of WhiteheadRussell p. 125. (Contributed by NM, 3-Jan-2005) (Proof shortened by Andrew Salmon, 7-May-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | pm5.3 | |- ( ( ( ph /\ ps ) -> ch ) <-> ( ( ph /\ ps ) -> ( ph /\ ch ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |- ( ( ph /\ ps ) -> ph ) |
|
2 | 1 | biantrurd | |- ( ( ph /\ ps ) -> ( ch <-> ( ph /\ ch ) ) ) |
3 | 2 | pm5.74i | |- ( ( ( ph /\ ps ) -> ch ) <-> ( ( ph /\ ps ) -> ( ph /\ ch ) ) ) |