Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 25-Dec-2004)
Ref | Expression | ||
---|---|---|---|
Hypothesis | pm5.32d.1 | |- ( ph -> ( ps -> ( ch <-> th ) ) ) |
|
Assertion | pm5.32rd | |- ( ph -> ( ( ch /\ ps ) <-> ( th /\ ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32d.1 | |- ( ph -> ( ps -> ( ch <-> th ) ) ) |
|
2 | 1 | pm5.32d | |- ( ph -> ( ( ps /\ ch ) <-> ( ps /\ th ) ) ) |
3 | ancom | |- ( ( ch /\ ps ) <-> ( ps /\ ch ) ) |
|
4 | ancom | |- ( ( th /\ ps ) <-> ( ps /\ th ) ) |
|
5 | 2 3 4 | 3bitr4g | |- ( ph -> ( ( ch /\ ps ) <-> ( th /\ ps ) ) ) |