Description: Theorem *5.33 of WhiteheadRussell p. 125. (Contributed by NM, 3-Jan-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | pm5.33 | |- ( ( ph /\ ( ps -> ch ) ) <-> ( ph /\ ( ( ph /\ ps ) -> ch ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibar | |- ( ph -> ( ps <-> ( ph /\ ps ) ) ) |
|
2 | 1 | imbi1d | |- ( ph -> ( ( ps -> ch ) <-> ( ( ph /\ ps ) -> ch ) ) ) |
3 | 2 | pm5.32i | |- ( ( ph /\ ( ps -> ch ) ) <-> ( ph /\ ( ( ph /\ ps ) -> ch ) ) ) |