Metamath Proof Explorer


Theorem pm5.501

Description: Theorem *5.501 of WhiteheadRussell p. 125. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm5.501
|- ( ph -> ( ps <-> ( ph <-> ps ) ) )

Proof

Step Hyp Ref Expression
1 pm5.1im
 |-  ( ph -> ( ps -> ( ph <-> ps ) ) )
2 biimp
 |-  ( ( ph <-> ps ) -> ( ph -> ps ) )
3 2 com12
 |-  ( ph -> ( ( ph <-> ps ) -> ps ) )
4 1 3 impbid
 |-  ( ph -> ( ps <-> ( ph <-> ps ) ) )