Description: Theorem *5.501 of WhiteheadRussell p. 125. (Contributed by NM, 3-Jan-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | pm5.501 | |- ( ph -> ( ps <-> ( ph <-> ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.1im | |- ( ph -> ( ps -> ( ph <-> ps ) ) ) |
|
2 | biimp | |- ( ( ph <-> ps ) -> ( ph -> ps ) ) |
|
3 | 2 | com12 | |- ( ph -> ( ( ph <-> ps ) -> ps ) ) |
4 | 1 3 | impbid | |- ( ph -> ( ps <-> ( ph <-> ps ) ) ) |