Description: Theorem *5.53 of WhiteheadRussell p. 125. (Contributed by NM, 3-Jan-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | pm5.53 | |- ( ( ( ( ph \/ ps ) \/ ch ) -> th ) <-> ( ( ( ph -> th ) /\ ( ps -> th ) ) /\ ( ch -> th ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaob | |- ( ( ( ( ph \/ ps ) \/ ch ) -> th ) <-> ( ( ( ph \/ ps ) -> th ) /\ ( ch -> th ) ) ) |
|
2 | jaob | |- ( ( ( ph \/ ps ) -> th ) <-> ( ( ph -> th ) /\ ( ps -> th ) ) ) |
|
3 | 2 | anbi1i | |- ( ( ( ( ph \/ ps ) -> th ) /\ ( ch -> th ) ) <-> ( ( ( ph -> th ) /\ ( ps -> th ) ) /\ ( ch -> th ) ) ) |
4 | 1 3 | bitri | |- ( ( ( ( ph \/ ps ) \/ ch ) -> th ) <-> ( ( ( ph -> th ) /\ ( ps -> th ) ) /\ ( ch -> th ) ) ) |