Metamath Proof Explorer


Theorem pm5.53

Description: Theorem *5.53 of WhiteheadRussell p. 125. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm5.53
|- ( ( ( ( ph \/ ps ) \/ ch ) -> th ) <-> ( ( ( ph -> th ) /\ ( ps -> th ) ) /\ ( ch -> th ) ) )

Proof

Step Hyp Ref Expression
1 jaob
 |-  ( ( ( ( ph \/ ps ) \/ ch ) -> th ) <-> ( ( ( ph \/ ps ) -> th ) /\ ( ch -> th ) ) )
2 jaob
 |-  ( ( ( ph \/ ps ) -> th ) <-> ( ( ph -> th ) /\ ( ps -> th ) ) )
3 2 anbi1i
 |-  ( ( ( ( ph \/ ps ) -> th ) /\ ( ch -> th ) ) <-> ( ( ( ph -> th ) /\ ( ps -> th ) ) /\ ( ch -> th ) ) )
4 1 3 bitri
 |-  ( ( ( ( ph \/ ps ) \/ ch ) -> th ) <-> ( ( ( ph -> th ) /\ ( ps -> th ) ) /\ ( ch -> th ) ) )