Description: Theorem *5.54 of WhiteheadRussell p. 125. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 7-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | pm5.54 | |- ( ( ( ph /\ ps ) <-> ph ) \/ ( ( ph /\ ps ) <-> ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iba | |- ( ps -> ( ph <-> ( ph /\ ps ) ) ) |
|
2 | 1 | bicomd | |- ( ps -> ( ( ph /\ ps ) <-> ph ) ) |
3 | 2 | adantl | |- ( ( ph /\ ps ) -> ( ( ph /\ ps ) <-> ph ) ) |
4 | 3 2 | pm5.21ni | |- ( -. ( ( ph /\ ps ) <-> ph ) -> ( ( ph /\ ps ) <-> ps ) ) |
5 | 4 | orri | |- ( ( ( ph /\ ps ) <-> ph ) \/ ( ( ph /\ ps ) <-> ps ) ) |