Description: Theorem *5.55 of WhiteheadRussell p. 125. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 20-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | pm5.55 | |- ( ( ( ph \/ ps ) <-> ph ) \/ ( ( ph \/ ps ) <-> ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biort | |- ( ph -> ( ph <-> ( ph \/ ps ) ) ) |
|
2 | 1 | bicomd | |- ( ph -> ( ( ph \/ ps ) <-> ph ) ) |
3 | biorf | |- ( -. ph -> ( ps <-> ( ph \/ ps ) ) ) |
|
4 | 3 | bicomd | |- ( -. ph -> ( ( ph \/ ps ) <-> ps ) ) |
5 | 2 4 | nsyl5 | |- ( -. ( ( ph \/ ps ) <-> ph ) -> ( ( ph \/ ps ) <-> ps ) ) |
6 | 5 | orri | |- ( ( ( ph \/ ps ) <-> ph ) \/ ( ( ph \/ ps ) <-> ps ) ) |