Description: Conjunction in antecedent versus disjunction in consequent. Theorem *5.6 of WhiteheadRussell p. 125. (Contributed by NM, 8-Jun-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | pm5.6 | |- ( ( ( ph /\ -. ps ) -> ch ) <-> ( ph -> ( ps \/ ch ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impexp | |- ( ( ( ph /\ -. ps ) -> ch ) <-> ( ph -> ( -. ps -> ch ) ) ) |
|
2 | df-or | |- ( ( ps \/ ch ) <-> ( -. ps -> ch ) ) |
|
3 | 2 | imbi2i | |- ( ( ph -> ( ps \/ ch ) ) <-> ( ph -> ( -. ps -> ch ) ) ) |
4 | 1 3 | bitr4i | |- ( ( ( ph /\ -. ps ) -> ch ) <-> ( ph -> ( ps \/ ch ) ) ) |