Description: Theorem *5.62 of WhiteheadRussell p. 125. (Contributed by Roy F. Longton, 21-Jun-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | pm5.62 | |- ( ( ( ph /\ ps ) \/ -. ps ) <-> ( ph \/ -. ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmid | |- ( ps \/ -. ps ) |
|
2 | ordir | |- ( ( ( ph /\ ps ) \/ -. ps ) <-> ( ( ph \/ -. ps ) /\ ( ps \/ -. ps ) ) ) |
|
3 | 1 2 | mpbiran2 | |- ( ( ( ph /\ ps ) \/ -. ps ) <-> ( ph \/ -. ps ) ) |