Description: Theorem *5.63 of WhiteheadRussell p. 125. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 25-Dec-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | pm5.63 | |- ( ( ph \/ ps ) <-> ( ph \/ ( -. ph /\ ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmid | |- ( ph \/ -. ph ) |
|
2 | ordi | |- ( ( ph \/ ( -. ph /\ ps ) ) <-> ( ( ph \/ -. ph ) /\ ( ph \/ ps ) ) ) |
|
3 | 1 2 | mpbiran | |- ( ( ph \/ ( -. ph /\ ps ) ) <-> ( ph \/ ps ) ) |
4 | 3 | bicomi | |- ( ( ph \/ ps ) <-> ( ph \/ ( -. ph /\ ps ) ) ) |