Metamath Proof Explorer


Theorem pm5.7

Description: Disjunction distributes over the biconditional. Theorem *5.7 of WhiteheadRussell p. 125. This theorem is similar to orbidi . (Contributed by Roy F. Longton, 21-Jun-2005)

Ref Expression
Assertion pm5.7
|- ( ( ( ph \/ ch ) <-> ( ps \/ ch ) ) <-> ( ch \/ ( ph <-> ps ) ) )

Proof

Step Hyp Ref Expression
1 orbidi
 |-  ( ( ch \/ ( ph <-> ps ) ) <-> ( ( ch \/ ph ) <-> ( ch \/ ps ) ) )
2 orcom
 |-  ( ( ch \/ ph ) <-> ( ph \/ ch ) )
3 orcom
 |-  ( ( ch \/ ps ) <-> ( ps \/ ch ) )
4 2 3 bibi12i
 |-  ( ( ( ch \/ ph ) <-> ( ch \/ ps ) ) <-> ( ( ph \/ ch ) <-> ( ps \/ ch ) ) )
5 1 4 bitr2i
 |-  ( ( ( ph \/ ch ) <-> ( ps \/ ch ) ) <-> ( ch \/ ( ph <-> ps ) ) )