Metamath Proof Explorer


Theorem pm5.74

Description: Distribution of implication over biconditional. Theorem *5.74 of WhiteheadRussell p. 126. (Contributed by NM, 1-Aug-1994) (Proof shortened by Wolf Lammen, 11-Apr-2013)

Ref Expression
Assertion pm5.74
|- ( ( ph -> ( ps <-> ch ) ) <-> ( ( ph -> ps ) <-> ( ph -> ch ) ) )

Proof

Step Hyp Ref Expression
1 biimp
 |-  ( ( ps <-> ch ) -> ( ps -> ch ) )
2 1 imim3i
 |-  ( ( ph -> ( ps <-> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) )
3 biimpr
 |-  ( ( ps <-> ch ) -> ( ch -> ps ) )
4 3 imim3i
 |-  ( ( ph -> ( ps <-> ch ) ) -> ( ( ph -> ch ) -> ( ph -> ps ) ) )
5 2 4 impbid
 |-  ( ( ph -> ( ps <-> ch ) ) -> ( ( ph -> ps ) <-> ( ph -> ch ) ) )
6 biimp
 |-  ( ( ( ph -> ps ) <-> ( ph -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) )
7 6 pm2.86d
 |-  ( ( ( ph -> ps ) <-> ( ph -> ch ) ) -> ( ph -> ( ps -> ch ) ) )
8 biimpr
 |-  ( ( ( ph -> ps ) <-> ( ph -> ch ) ) -> ( ( ph -> ch ) -> ( ph -> ps ) ) )
9 8 pm2.86d
 |-  ( ( ( ph -> ps ) <-> ( ph -> ch ) ) -> ( ph -> ( ch -> ps ) ) )
10 7 9 impbidd
 |-  ( ( ( ph -> ps ) <-> ( ph -> ch ) ) -> ( ph -> ( ps <-> ch ) ) )
11 5 10 impbii
 |-  ( ( ph -> ( ps <-> ch ) ) <-> ( ( ph -> ps ) <-> ( ph -> ch ) ) )