Step |
Hyp |
Ref |
Expression |
1 |
|
biimp |
|- ( ( ps <-> ch ) -> ( ps -> ch ) ) |
2 |
1
|
imim3i |
|- ( ( ph -> ( ps <-> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) |
3 |
|
biimpr |
|- ( ( ps <-> ch ) -> ( ch -> ps ) ) |
4 |
3
|
imim3i |
|- ( ( ph -> ( ps <-> ch ) ) -> ( ( ph -> ch ) -> ( ph -> ps ) ) ) |
5 |
2 4
|
impbid |
|- ( ( ph -> ( ps <-> ch ) ) -> ( ( ph -> ps ) <-> ( ph -> ch ) ) ) |
6 |
|
biimp |
|- ( ( ( ph -> ps ) <-> ( ph -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) |
7 |
6
|
pm2.86d |
|- ( ( ( ph -> ps ) <-> ( ph -> ch ) ) -> ( ph -> ( ps -> ch ) ) ) |
8 |
|
biimpr |
|- ( ( ( ph -> ps ) <-> ( ph -> ch ) ) -> ( ( ph -> ch ) -> ( ph -> ps ) ) ) |
9 |
8
|
pm2.86d |
|- ( ( ( ph -> ps ) <-> ( ph -> ch ) ) -> ( ph -> ( ch -> ps ) ) ) |
10 |
7 9
|
impbidd |
|- ( ( ( ph -> ps ) <-> ( ph -> ch ) ) -> ( ph -> ( ps <-> ch ) ) ) |
11 |
5 10
|
impbii |
|- ( ( ph -> ( ps <-> ch ) ) <-> ( ( ph -> ps ) <-> ( ph -> ch ) ) ) |