Step |
Hyp |
Ref |
Expression |
1 |
|
pmap1.u |
|- .1. = ( 1. ` K ) |
2 |
|
pmap1.a |
|- A = ( Atoms ` K ) |
3 |
|
pmap1.m |
|- M = ( pmap ` K ) |
4 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
5 |
4 1
|
op1cl |
|- ( K e. OP -> .1. e. ( Base ` K ) ) |
6 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
7 |
4 6 2 3
|
pmapval |
|- ( ( K e. OP /\ .1. e. ( Base ` K ) ) -> ( M ` .1. ) = { p e. A | p ( le ` K ) .1. } ) |
8 |
5 7
|
mpdan |
|- ( K e. OP -> ( M ` .1. ) = { p e. A | p ( le ` K ) .1. } ) |
9 |
4 2
|
atbase |
|- ( p e. A -> p e. ( Base ` K ) ) |
10 |
4 6 1
|
ople1 |
|- ( ( K e. OP /\ p e. ( Base ` K ) ) -> p ( le ` K ) .1. ) |
11 |
9 10
|
sylan2 |
|- ( ( K e. OP /\ p e. A ) -> p ( le ` K ) .1. ) |
12 |
11
|
ralrimiva |
|- ( K e. OP -> A. p e. A p ( le ` K ) .1. ) |
13 |
|
rabid2 |
|- ( A = { p e. A | p ( le ` K ) .1. } <-> A. p e. A p ( le ` K ) .1. ) |
14 |
12 13
|
sylibr |
|- ( K e. OP -> A = { p e. A | p ( le ` K ) .1. } ) |
15 |
8 14
|
eqtr4d |
|- ( K e. OP -> ( M ` .1. ) = A ) |