Metamath Proof Explorer


Theorem pmapat

Description: The projective map of an atom. (Contributed by NM, 25-Jan-2012)

Ref Expression
Hypotheses pmapat.a
|- A = ( Atoms ` K )
pmapat.m
|- M = ( pmap ` K )
Assertion pmapat
|- ( ( K e. HL /\ P e. A ) -> ( M ` P ) = { P } )

Proof

Step Hyp Ref Expression
1 pmapat.a
 |-  A = ( Atoms ` K )
2 pmapat.m
 |-  M = ( pmap ` K )
3 eqid
 |-  ( Base ` K ) = ( Base ` K )
4 3 1 atbase
 |-  ( P e. A -> P e. ( Base ` K ) )
5 eqid
 |-  ( le ` K ) = ( le ` K )
6 3 5 1 2 pmapval
 |-  ( ( K e. HL /\ P e. ( Base ` K ) ) -> ( M ` P ) = { q e. A | q ( le ` K ) P } )
7 4 6 sylan2
 |-  ( ( K e. HL /\ P e. A ) -> ( M ` P ) = { q e. A | q ( le ` K ) P } )
8 hlatl
 |-  ( K e. HL -> K e. AtLat )
9 8 ad2antrr
 |-  ( ( ( K e. HL /\ P e. A ) /\ q e. A ) -> K e. AtLat )
10 simpr
 |-  ( ( ( K e. HL /\ P e. A ) /\ q e. A ) -> q e. A )
11 simplr
 |-  ( ( ( K e. HL /\ P e. A ) /\ q e. A ) -> P e. A )
12 5 1 atcmp
 |-  ( ( K e. AtLat /\ q e. A /\ P e. A ) -> ( q ( le ` K ) P <-> q = P ) )
13 9 10 11 12 syl3anc
 |-  ( ( ( K e. HL /\ P e. A ) /\ q e. A ) -> ( q ( le ` K ) P <-> q = P ) )
14 13 rabbidva
 |-  ( ( K e. HL /\ P e. A ) -> { q e. A | q ( le ` K ) P } = { q e. A | q = P } )
15 rabsn
 |-  ( P e. A -> { q e. A | q = P } = { P } )
16 15 adantl
 |-  ( ( K e. HL /\ P e. A ) -> { q e. A | q = P } = { P } )
17 7 14 16 3eqtrd
 |-  ( ( K e. HL /\ P e. A ) -> ( M ` P ) = { P } )