Step |
Hyp |
Ref |
Expression |
1 |
|
pmapeq0.b |
|- B = ( Base ` K ) |
2 |
|
pmapeq0.z |
|- .0. = ( 0. ` K ) |
3 |
|
pmapeq0.m |
|- M = ( pmap ` K ) |
4 |
|
hlatl |
|- ( K e. HL -> K e. AtLat ) |
5 |
4
|
adantr |
|- ( ( K e. HL /\ X e. B ) -> K e. AtLat ) |
6 |
2 3
|
pmap0 |
|- ( K e. AtLat -> ( M ` .0. ) = (/) ) |
7 |
5 6
|
syl |
|- ( ( K e. HL /\ X e. B ) -> ( M ` .0. ) = (/) ) |
8 |
7
|
eqeq2d |
|- ( ( K e. HL /\ X e. B ) -> ( ( M ` X ) = ( M ` .0. ) <-> ( M ` X ) = (/) ) ) |
9 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
10 |
9
|
adantr |
|- ( ( K e. HL /\ X e. B ) -> K e. OP ) |
11 |
1 2
|
op0cl |
|- ( K e. OP -> .0. e. B ) |
12 |
10 11
|
syl |
|- ( ( K e. HL /\ X e. B ) -> .0. e. B ) |
13 |
1 3
|
pmap11 |
|- ( ( K e. HL /\ X e. B /\ .0. e. B ) -> ( ( M ` X ) = ( M ` .0. ) <-> X = .0. ) ) |
14 |
12 13
|
mpd3an3 |
|- ( ( K e. HL /\ X e. B ) -> ( ( M ` X ) = ( M ` .0. ) <-> X = .0. ) ) |
15 |
8 14
|
bitr3d |
|- ( ( K e. HL /\ X e. B ) -> ( ( M ` X ) = (/) <-> X = .0. ) ) |