Metamath Proof Explorer


Theorem pmapeq0

Description: A projective map value is zero iff its argument is lattice zero. (Contributed by NM, 27-Jan-2012)

Ref Expression
Hypotheses pmapeq0.b
|- B = ( Base ` K )
pmapeq0.z
|- .0. = ( 0. ` K )
pmapeq0.m
|- M = ( pmap ` K )
Assertion pmapeq0
|- ( ( K e. HL /\ X e. B ) -> ( ( M ` X ) = (/) <-> X = .0. ) )

Proof

Step Hyp Ref Expression
1 pmapeq0.b
 |-  B = ( Base ` K )
2 pmapeq0.z
 |-  .0. = ( 0. ` K )
3 pmapeq0.m
 |-  M = ( pmap ` K )
4 hlatl
 |-  ( K e. HL -> K e. AtLat )
5 4 adantr
 |-  ( ( K e. HL /\ X e. B ) -> K e. AtLat )
6 2 3 pmap0
 |-  ( K e. AtLat -> ( M ` .0. ) = (/) )
7 5 6 syl
 |-  ( ( K e. HL /\ X e. B ) -> ( M ` .0. ) = (/) )
8 7 eqeq2d
 |-  ( ( K e. HL /\ X e. B ) -> ( ( M ` X ) = ( M ` .0. ) <-> ( M ` X ) = (/) ) )
9 hlop
 |-  ( K e. HL -> K e. OP )
10 9 adantr
 |-  ( ( K e. HL /\ X e. B ) -> K e. OP )
11 1 2 op0cl
 |-  ( K e. OP -> .0. e. B )
12 10 11 syl
 |-  ( ( K e. HL /\ X e. B ) -> .0. e. B )
13 1 3 pmap11
 |-  ( ( K e. HL /\ X e. B /\ .0. e. B ) -> ( ( M ` X ) = ( M ` .0. ) <-> X = .0. ) )
14 12 13 mpd3an3
 |-  ( ( K e. HL /\ X e. B ) -> ( ( M ` X ) = ( M ` .0. ) <-> X = .0. ) )
15 8 14 bitr3d
 |-  ( ( K e. HL /\ X e. B ) -> ( ( M ` X ) = (/) <-> X = .0. ) )