Step |
Hyp |
Ref |
Expression |
1 |
|
pmapglb2.b |
|- B = ( Base ` K ) |
2 |
|
pmapglb2.g |
|- G = ( glb ` K ) |
3 |
|
pmapglb2.a |
|- A = ( Atoms ` K ) |
4 |
|
pmapglb2.m |
|- M = ( pmap ` K ) |
5 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
6 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
7 |
2 6
|
glb0N |
|- ( K e. OP -> ( G ` (/) ) = ( 1. ` K ) ) |
8 |
7
|
fveq2d |
|- ( K e. OP -> ( M ` ( G ` (/) ) ) = ( M ` ( 1. ` K ) ) ) |
9 |
6 3 4
|
pmap1N |
|- ( K e. OP -> ( M ` ( 1. ` K ) ) = A ) |
10 |
8 9
|
eqtrd |
|- ( K e. OP -> ( M ` ( G ` (/) ) ) = A ) |
11 |
5 10
|
syl |
|- ( K e. HL -> ( M ` ( G ` (/) ) ) = A ) |
12 |
|
2fveq3 |
|- ( S = (/) -> ( M ` ( G ` S ) ) = ( M ` ( G ` (/) ) ) ) |
13 |
|
riin0 |
|- ( S = (/) -> ( A i^i |^|_ x e. S ( M ` x ) ) = A ) |
14 |
12 13
|
eqeq12d |
|- ( S = (/) -> ( ( M ` ( G ` S ) ) = ( A i^i |^|_ x e. S ( M ` x ) ) <-> ( M ` ( G ` (/) ) ) = A ) ) |
15 |
11 14
|
syl5ibrcom |
|- ( K e. HL -> ( S = (/) -> ( M ` ( G ` S ) ) = ( A i^i |^|_ x e. S ( M ` x ) ) ) ) |
16 |
15
|
adantr |
|- ( ( K e. HL /\ S C_ B ) -> ( S = (/) -> ( M ` ( G ` S ) ) = ( A i^i |^|_ x e. S ( M ` x ) ) ) ) |
17 |
1 2 4
|
pmapglb |
|- ( ( K e. HL /\ S C_ B /\ S =/= (/) ) -> ( M ` ( G ` S ) ) = |^|_ x e. S ( M ` x ) ) |
18 |
|
simpr |
|- ( ( ( K e. HL /\ S C_ B ) /\ x e. S ) -> x e. S ) |
19 |
|
simpll |
|- ( ( ( K e. HL /\ S C_ B ) /\ x e. S ) -> K e. HL ) |
20 |
|
ssel2 |
|- ( ( S C_ B /\ x e. S ) -> x e. B ) |
21 |
20
|
adantll |
|- ( ( ( K e. HL /\ S C_ B ) /\ x e. S ) -> x e. B ) |
22 |
1 3 4
|
pmapssat |
|- ( ( K e. HL /\ x e. B ) -> ( M ` x ) C_ A ) |
23 |
19 21 22
|
syl2anc |
|- ( ( ( K e. HL /\ S C_ B ) /\ x e. S ) -> ( M ` x ) C_ A ) |
24 |
18 23
|
jca |
|- ( ( ( K e. HL /\ S C_ B ) /\ x e. S ) -> ( x e. S /\ ( M ` x ) C_ A ) ) |
25 |
24
|
ex |
|- ( ( K e. HL /\ S C_ B ) -> ( x e. S -> ( x e. S /\ ( M ` x ) C_ A ) ) ) |
26 |
25
|
eximdv |
|- ( ( K e. HL /\ S C_ B ) -> ( E. x x e. S -> E. x ( x e. S /\ ( M ` x ) C_ A ) ) ) |
27 |
|
n0 |
|- ( S =/= (/) <-> E. x x e. S ) |
28 |
|
df-rex |
|- ( E. x e. S ( M ` x ) C_ A <-> E. x ( x e. S /\ ( M ` x ) C_ A ) ) |
29 |
26 27 28
|
3imtr4g |
|- ( ( K e. HL /\ S C_ B ) -> ( S =/= (/) -> E. x e. S ( M ` x ) C_ A ) ) |
30 |
29
|
3impia |
|- ( ( K e. HL /\ S C_ B /\ S =/= (/) ) -> E. x e. S ( M ` x ) C_ A ) |
31 |
|
iinss |
|- ( E. x e. S ( M ` x ) C_ A -> |^|_ x e. S ( M ` x ) C_ A ) |
32 |
30 31
|
syl |
|- ( ( K e. HL /\ S C_ B /\ S =/= (/) ) -> |^|_ x e. S ( M ` x ) C_ A ) |
33 |
|
sseqin2 |
|- ( |^|_ x e. S ( M ` x ) C_ A <-> ( A i^i |^|_ x e. S ( M ` x ) ) = |^|_ x e. S ( M ` x ) ) |
34 |
32 33
|
sylib |
|- ( ( K e. HL /\ S C_ B /\ S =/= (/) ) -> ( A i^i |^|_ x e. S ( M ` x ) ) = |^|_ x e. S ( M ` x ) ) |
35 |
17 34
|
eqtr4d |
|- ( ( K e. HL /\ S C_ B /\ S =/= (/) ) -> ( M ` ( G ` S ) ) = ( A i^i |^|_ x e. S ( M ` x ) ) ) |
36 |
35
|
3expia |
|- ( ( K e. HL /\ S C_ B ) -> ( S =/= (/) -> ( M ` ( G ` S ) ) = ( A i^i |^|_ x e. S ( M ` x ) ) ) ) |
37 |
16 36
|
pm2.61dne |
|- ( ( K e. HL /\ S C_ B ) -> ( M ` ( G ` S ) ) = ( A i^i |^|_ x e. S ( M ` x ) ) ) |