Step |
Hyp |
Ref |
Expression |
1 |
|
pmapidcl.u |
|- U = ( lub ` K ) |
2 |
|
pmapidcl.m |
|- M = ( pmap ` K ) |
3 |
|
pmapidcl.c |
|- C = ( PSubCl ` K ) |
4 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
5 |
4 3
|
psubclssatN |
|- ( ( K e. HL /\ X e. C ) -> X C_ ( Atoms ` K ) ) |
6 |
|
eqid |
|- ( _|_P ` K ) = ( _|_P ` K ) |
7 |
1 4 2 6
|
2polvalN |
|- ( ( K e. HL /\ X C_ ( Atoms ` K ) ) -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` X ) ) = ( M ` ( U ` X ) ) ) |
8 |
5 7
|
syldan |
|- ( ( K e. HL /\ X e. C ) -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` X ) ) = ( M ` ( U ` X ) ) ) |
9 |
6 3
|
psubcli2N |
|- ( ( K e. HL /\ X e. C ) -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` X ) ) = X ) |
10 |
8 9
|
eqtr3d |
|- ( ( K e. HL /\ X e. C ) -> ( M ` ( U ` X ) ) = X ) |