Step |
Hyp |
Ref |
Expression |
1 |
|
pmapjat.b |
|- B = ( Base ` K ) |
2 |
|
pmapjat.j |
|- .\/ = ( join ` K ) |
3 |
|
pmapjat.a |
|- A = ( Atoms ` K ) |
4 |
|
pmapjat.m |
|- M = ( pmap ` K ) |
5 |
|
pmapjat.p |
|- .+ = ( +P ` K ) |
6 |
1 2 3 4 5
|
pmapjat1 |
|- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( M ` ( X .\/ Q ) ) = ( ( M ` X ) .+ ( M ` Q ) ) ) |
7 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
8 |
7
|
3ad2ant1 |
|- ( ( K e. HL /\ X e. B /\ Q e. A ) -> K e. Lat ) |
9 |
1 3
|
atbase |
|- ( Q e. A -> Q e. B ) |
10 |
9
|
3ad2ant3 |
|- ( ( K e. HL /\ X e. B /\ Q e. A ) -> Q e. B ) |
11 |
|
simp2 |
|- ( ( K e. HL /\ X e. B /\ Q e. A ) -> X e. B ) |
12 |
1 2
|
latjcom |
|- ( ( K e. Lat /\ Q e. B /\ X e. B ) -> ( Q .\/ X ) = ( X .\/ Q ) ) |
13 |
8 10 11 12
|
syl3anc |
|- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( Q .\/ X ) = ( X .\/ Q ) ) |
14 |
13
|
fveq2d |
|- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( M ` ( Q .\/ X ) ) = ( M ` ( X .\/ Q ) ) ) |
15 |
|
simp1 |
|- ( ( K e. HL /\ X e. B /\ Q e. A ) -> K e. HL ) |
16 |
1 3 4
|
pmapssat |
|- ( ( K e. HL /\ Q e. B ) -> ( M ` Q ) C_ A ) |
17 |
15 10 16
|
syl2anc |
|- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( M ` Q ) C_ A ) |
18 |
1 3 4
|
pmapssat |
|- ( ( K e. HL /\ X e. B ) -> ( M ` X ) C_ A ) |
19 |
18
|
3adant3 |
|- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( M ` X ) C_ A ) |
20 |
3 5
|
paddcom |
|- ( ( K e. Lat /\ ( M ` Q ) C_ A /\ ( M ` X ) C_ A ) -> ( ( M ` Q ) .+ ( M ` X ) ) = ( ( M ` X ) .+ ( M ` Q ) ) ) |
21 |
8 17 19 20
|
syl3anc |
|- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( ( M ` Q ) .+ ( M ` X ) ) = ( ( M ` X ) .+ ( M ` Q ) ) ) |
22 |
6 14 21
|
3eqtr4d |
|- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( M ` ( Q .\/ X ) ) = ( ( M ` Q ) .+ ( M ` X ) ) ) |