| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pmapjat.b | 
							 |-  B = ( Base ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							pmapjat.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							pmapjat.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							pmapjat.m | 
							 |-  M = ( pmap ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							pmapjat.p | 
							 |-  .+ = ( +P ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							simpl | 
							 |-  ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> K e. HL )  | 
						
						
							| 7 | 
							
								1 3 4
							 | 
							pmapssat | 
							 |-  ( ( K e. HL /\ X e. B ) -> ( M ` X ) C_ A )  | 
						
						
							| 8 | 
							
								7
							 | 
							3ad2antr1 | 
							 |-  ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( M ` X ) C_ A )  | 
						
						
							| 9 | 
							
								
							 | 
							simpr2 | 
							 |-  ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> Q e. A )  | 
						
						
							| 10 | 
							
								1 3
							 | 
							atbase | 
							 |-  ( Q e. A -> Q e. B )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							syl | 
							 |-  ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> Q e. B )  | 
						
						
							| 12 | 
							
								1 3 4
							 | 
							pmapssat | 
							 |-  ( ( K e. HL /\ Q e. B ) -> ( M ` Q ) C_ A )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							syldan | 
							 |-  ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( M ` Q ) C_ A )  | 
						
						
							| 14 | 
							
								
							 | 
							simpr3 | 
							 |-  ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> R e. A )  | 
						
						
							| 15 | 
							
								1 3
							 | 
							atbase | 
							 |-  ( R e. A -> R e. B )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							syl | 
							 |-  ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> R e. B )  | 
						
						
							| 17 | 
							
								1 3 4
							 | 
							pmapssat | 
							 |-  ( ( K e. HL /\ R e. B ) -> ( M ` R ) C_ A )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							syldan | 
							 |-  ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( M ` R ) C_ A )  | 
						
						
							| 19 | 
							
								3 5
							 | 
							paddass | 
							 |-  ( ( K e. HL /\ ( ( M ` X ) C_ A /\ ( M ` Q ) C_ A /\ ( M ` R ) C_ A ) ) -> ( ( ( M ` X ) .+ ( M ` Q ) ) .+ ( M ` R ) ) = ( ( M ` X ) .+ ( ( M ` Q ) .+ ( M ` R ) ) ) )  | 
						
						
							| 20 | 
							
								6 8 13 18 19
							 | 
							syl13anc | 
							 |-  ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( ( ( M ` X ) .+ ( M ` Q ) ) .+ ( M ` R ) ) = ( ( M ` X ) .+ ( ( M ` Q ) .+ ( M ` R ) ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							hllat | 
							 |-  ( K e. HL -> K e. Lat )  | 
						
						
							| 22 | 
							
								21
							 | 
							adantr | 
							 |-  ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> K e. Lat )  | 
						
						
							| 23 | 
							
								
							 | 
							simpr1 | 
							 |-  ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> X e. B )  | 
						
						
							| 24 | 
							
								1 2
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ X e. B /\ Q e. B ) -> ( X .\/ Q ) e. B )  | 
						
						
							| 25 | 
							
								22 23 11 24
							 | 
							syl3anc | 
							 |-  ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( X .\/ Q ) e. B )  | 
						
						
							| 26 | 
							
								1 2 3 4 5
							 | 
							pmapjat1 | 
							 |-  ( ( K e. HL /\ ( X .\/ Q ) e. B /\ R e. A ) -> ( M ` ( ( X .\/ Q ) .\/ R ) ) = ( ( M ` ( X .\/ Q ) ) .+ ( M ` R ) ) )  | 
						
						
							| 27 | 
							
								6 25 14 26
							 | 
							syl3anc | 
							 |-  ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( M ` ( ( X .\/ Q ) .\/ R ) ) = ( ( M ` ( X .\/ Q ) ) .+ ( M ` R ) ) )  | 
						
						
							| 28 | 
							
								1 2
							 | 
							latjass | 
							 |-  ( ( K e. Lat /\ ( X e. B /\ Q e. B /\ R e. B ) ) -> ( ( X .\/ Q ) .\/ R ) = ( X .\/ ( Q .\/ R ) ) )  | 
						
						
							| 29 | 
							
								22 23 11 16 28
							 | 
							syl13anc | 
							 |-  ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( ( X .\/ Q ) .\/ R ) = ( X .\/ ( Q .\/ R ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							fveq2d | 
							 |-  ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( M ` ( ( X .\/ Q ) .\/ R ) ) = ( M ` ( X .\/ ( Q .\/ R ) ) ) )  | 
						
						
							| 31 | 
							
								1 2 3 4 5
							 | 
							pmapjat1 | 
							 |-  ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( M ` ( X .\/ Q ) ) = ( ( M ` X ) .+ ( M ` Q ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							3adant3r3 | 
							 |-  ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( M ` ( X .\/ Q ) ) = ( ( M ` X ) .+ ( M ` Q ) ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							oveq1d | 
							 |-  ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( ( M ` ( X .\/ Q ) ) .+ ( M ` R ) ) = ( ( ( M ` X ) .+ ( M ` Q ) ) .+ ( M ` R ) ) )  | 
						
						
							| 34 | 
							
								27 30 33
							 | 
							3eqtr3d | 
							 |-  ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( M ` ( X .\/ ( Q .\/ R ) ) ) = ( ( ( M ` X ) .+ ( M ` Q ) ) .+ ( M ` R ) ) )  | 
						
						
							| 35 | 
							
								1 2 3 4 5
							 | 
							pmapjat1 | 
							 |-  ( ( K e. HL /\ Q e. B /\ R e. A ) -> ( M ` ( Q .\/ R ) ) = ( ( M ` Q ) .+ ( M ` R ) ) )  | 
						
						
							| 36 | 
							
								6 11 14 35
							 | 
							syl3anc | 
							 |-  ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( M ` ( Q .\/ R ) ) = ( ( M ` Q ) .+ ( M ` R ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							oveq2d | 
							 |-  ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( ( M ` X ) .+ ( M ` ( Q .\/ R ) ) ) = ( ( M ` X ) .+ ( ( M ` Q ) .+ ( M ` R ) ) ) )  | 
						
						
							| 38 | 
							
								20 34 37
							 | 
							3eqtr4d | 
							 |-  ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( M ` ( X .\/ ( Q .\/ R ) ) ) = ( ( M ` X ) .+ ( M ` ( Q .\/ R ) ) ) )  |