Metamath Proof Explorer


Theorem pmapssat

Description: The projective map of a Hilbert lattice is a set of atoms. (Contributed by NM, 14-Jan-2012)

Ref Expression
Hypotheses pmapssat.b
|- B = ( Base ` K )
pmapssat.a
|- A = ( Atoms ` K )
pmapssat.m
|- M = ( pmap ` K )
Assertion pmapssat
|- ( ( K e. C /\ X e. B ) -> ( M ` X ) C_ A )

Proof

Step Hyp Ref Expression
1 pmapssat.b
 |-  B = ( Base ` K )
2 pmapssat.a
 |-  A = ( Atoms ` K )
3 pmapssat.m
 |-  M = ( pmap ` K )
4 eqid
 |-  ( le ` K ) = ( le ` K )
5 1 4 2 3 pmapval
 |-  ( ( K e. C /\ X e. B ) -> ( M ` X ) = { p e. A | p ( le ` K ) X } )
6 ssrab2
 |-  { p e. A | p ( le ` K ) X } C_ A
7 5 6 eqsstrdi
 |-  ( ( K e. C /\ X e. B ) -> ( M ` X ) C_ A )