Metamath Proof Explorer


Theorem pmapssbaN

Description: A weakening of pmapssat to shorten some proofs. (Contributed by NM, 7-Mar-2012) (New usage is discouraged.)

Ref Expression
Hypotheses pmapssba.b
|- B = ( Base ` K )
pmapssba.m
|- M = ( pmap ` K )
Assertion pmapssbaN
|- ( ( K e. C /\ X e. B ) -> ( M ` X ) C_ B )

Proof

Step Hyp Ref Expression
1 pmapssba.b
 |-  B = ( Base ` K )
2 pmapssba.m
 |-  M = ( pmap ` K )
3 eqid
 |-  ( Atoms ` K ) = ( Atoms ` K )
4 1 3 2 pmapssat
 |-  ( ( K e. C /\ X e. B ) -> ( M ` X ) C_ ( Atoms ` K ) )
5 1 3 atssbase
 |-  ( Atoms ` K ) C_ B
6 4 5 sstrdi
 |-  ( ( K e. C /\ X e. B ) -> ( M ` X ) C_ B )